

Teacher's Guide for

Teacher's Guide for
ATTTRIBUTVE GAIIE ANID PRROBLIEAN

Copyright © 1966, 1968 by Education Development Centor. Inc. All
Rightis Reserved Printed in the United States of America No part or this pubbication may be reproduced, stored in a retrieval system, or tamemittbd, in any form or by any means, electronic, mechanical. photocopying, recording, or otherwise, without the prior written rermission of the publishers Except for the figthe to meteris) inserved by theres, she pubister and the copyright owne ter Uned sumesend Conadator use of tho Wert whout ctuates in the English iongurge 3974 , rovises mot sibiconions incrovo.

The Elementary Scienco Study is one or many curncum programs in the tields of science, social studies, an under preparation at Education Development Cont vate nonprofit organization, incorporating the instluthe-1. inovation and Educational Services Incorporated develop new ideas and methods for improving the of education
ESS has been supported primarily by grants from Foundation. Development of materials for teaching arten through eighth grade started on a small scal of the project has since involved more than a hun ducators in the concoption and design of its hese scholars have been biologists, physicists. " rom kindergarten through collegg
Equipment, filmes, and printed materials are prodil statf specialists as well as the film studio,
aboratory, and the production shops of EDC siopment, ideas and materials are taken into a hiere childron help shape the form and conto
is rolegseged to schools syorywhore

Copyright © 1966, 1968 by Education Development Center, Inc. All Rights Roserved. Printed in the United States of America No part of this publication may be reproduced. stored in a retrieval system. or transmitted, in any lorm or by any means, electronic, mechanice,
photocopying. recording. or otherwise, without the prior written permission of the publishers
 horoby grant permission to domeostic porsons
of the OUnitod Statos and Cannda tor use of this
work without ther and work withiout Charge in the English languas in the United States and Canada atter January

1. 1974 , porvided that
publicatitions incorporating metorials coverod by theso copyright
contain the original copyright notice and contain tome that the pubilication is not ondorsod
statoment
by the original copyright owner For condition by the original copyright owner. For condition
of use and permision to usa materials con of uso and parmission to uso materials con-
tainod heroin for foroign publication or publi sations in othor than the English language.
apply to tho copyright owner.

The Elementary Science Study is one of many curriculum development programs in the fields of science. social studies, and mathematics under preparation at Education Development Center. Inc. EDC /a pri-
vate nonprofit organization, incorporating the Institute tor Educeto Innovation and Educational Services incorporated) began in 1958 to develop new ideas and methods tor improving the content and process ot education
EsS has been supported primarily by grants from the National Science oundation. Development of maternals tor teaching science trom kinder artien through eighth grade started on a small scale in 1960 The work ducators in the conception and design of its units of study Among hese scholars have been biologists, physicists, mathematicianis, eors, and teachers rom kindergarten through college.
quipment, films, and printod matorials are produced with the help t statl specialists as well as the film studio, the photographic laboratory, and the production shops of EDC. At every stage of deapero ideas and materials are taken into actual classioos. is roleased to schools everywhere

Attribute Games and Problems had its beginning in about 1953 I had been perplexed by the fact that some of the students in my tifth grad
Class at Shady Hill School. Cambridge. Massachusetts, who were class at Shady Hill School. Cambridge, Massachusetts, who were
most successtul in dealing with new problems in tresh and creative most successtul in dealing with new problems in iresh and creative
ways were not particularly distinguished in traditional kinds of schoo work, and. conversely. other students, who were able to complete assigned work efficiently, were quite limited when dealing with problems which were not familiar to them. As I studied problemvery important aspects of children's thinking for which we had no adequate measure. The block-sorting test which I developed to obta more objective evidence about skills of thought became the direct ancestor of A Blocks and People Pieces
This experience with the block-sorting test helped me become aware
of the importance of classification in problem solving and the value of the importance of classification in problem solving and the value with many games and puzzles. One of these, which my fifth grade class helped me develop over ten years ago. is presented here in the form of Creature Cards.
In 1962 I had a chance to develop some of the educational implications of this work with five-year-olds. Two people were my principal collaborators in this stage of the development David Armington, now
associated with the Cleveland Public Schools, observed some of $m y$ work with children and repeated many of the activities with another class of five-year-olds. Anthony Kallet. of the Advisory Center. Leicestershire, England, participated in many of the discussions which we had and contributed new ideas of his own such as the city-planning game and the pattern games with the Color Cubes.
The contributions of these two people have strongly shaped the content and the style of this work A great many suggestions came
directly from the children or were suggested to us by the kinds of things which they did with the materials
zottan Dienes recognized the importance of this work and gave us strong encouragement in its eariy stage
The autribute materials were made available for a larger scale trial in 1964 by the Elementary Science Study. Many moditications and extensions have been made since then. Many people on the ESS sta have helped by reporting their own experiences with these materia
and also their experiences in using and also their experiences in using them with children and with Ascheim, in particular, have helped me with further testing and re vision. Mary Lela Sherburne and Edith \mathbf{H}. E. Churchill have been ver helpful with evaluation.

A great many teachers and student teachers, too numerous to list have helped us by testing, criticizing, and offering alternatives Ray Hemmings of Leicester University in England and Martin C Michener w w,
Elmer W . Smith did the drawings and invented many of the names and some of the ideas for Creature Cards.
Janet Williams. Frieda Ployer, and Adeline Naiman have provided nelpful editorial assistance.
Dr. Kallet has continued to assist with development, testing. and writing. His contributions have influenced the progress of the work strongly.

Willam P.
introduction

Commentary on Problem Cards
A Blocks
Color Cubes
\qquad 10

People Pieces \qquad -43

Creature Cards \qquad 74
Chapter Two
Atribute Games and Thinking Skills. \qquad
Chapter Three
Uses With Children

Attribute Games and Problems is concerned with the development of thinking skills in children. It provides an opportunity tor children to deal with problems involving classification and the relationships between classes. Experiences w for solvyno probm can help provide the familiarity and the skili necessary tor solving problems in science. social studies,
mathematics, or wherever classitication and dealing with the relation between classes are called tor
Attribute Games and Problems includes a variety of materials: woode blocks and cubes. plastic squares with pictures of people on them. colored loops and label cards, a set of Creature Cards included in a se of problem cards which suggest some of the activites which are possi-
ble, attribute stickers. and a teacher's sude tor the use ot the materials Included on the cards are suggestions for games and activities simple enough for most five-year-olds and complex enough for anyone Older students who are going to work directly with the problem cards should begin with the card Suggested Games and Problems.

These activities are not linked to a particular subject in the curriculum
or to a narrow range of ages. The activities need not involve an entire or to a narrow range of ages. The activities need not involve an entire
class at the same time nor do they require an entire class period They can be used during regularly scheduled classes in science or other subjects or more freely between classes or at other times during the school day
Attribute Games and Problems has grown out of a long-range study of children's thinking in and out of the classroom and a continuing analys! of their ditficulties and successes in a wide range of intellectual undertakings. There appear to be thinking skills and attitudes tow ard problem
solving which are relatively independent of subject matter Some children acquire effective thinking skills and a useful orientation toward learning in the normal course of growing up in a complex world. but the acquisition of useful skills and attitudes is by no means automatic, even children succeed in school by repeating what they are told in a slightly
different form or by pure memorization Such strategies may be effectiv for meeting curriculum requirements, but they are atten of little exended value it has seemed to us that at present relatively few children develop persistence and zest tor dealing with new complexities nor do
they become aware of therr own intellectual power ey become aware or her own nelectual power
The results of our investigations tend to contrm a suspicion we have of experiences a child has had than they do upon his age or grade in school. It is tor this reason that in Attribute Games and Problems the same materials are used, though in inerent ways. from kindergarte hrough eighth grade and beyond
Chapter 1 of this teacher's guide consists of reproductions of a serices ot cards describing games and problems. together with a commentary hildren of different ages These same cards are printed separateiv tor use by students at the junior high school level or to serve as reminders of possibilitites for teachers working with younger children Perhaps the best introduction to Attribute Games and Problerrs would be to attend workshop in which you would play some of the games suggested her
using Color Cubes, People Pleces. A Blocks. and Creature Cards Befor you use these materials with children you should have an opportunity to play some of the simple and the advanced games yourselt so that you will have a sense of the range of possible activities
Although many of the games and problems suggested in the cards can be played with younger children, do not expect them to approach the problems in just the way you have done them Some of these cards en working trom the cards you should be concerned with your own think ing, not with how you are going to present these problems to your class It will probably be more helpful to you to return to the commentary at a later time than it will to read it when you are exploring the cards for the
ner will probably prove helptul. Some of the problems will prove chal-
lenging. You may wish to work on them over a period of several days or
weeks. weeks.
If the full problem card sequence appears too formidable or if you do
not have time to complete all of it before beginning to work with chilnot have time to complete all of it before beginning to work with chil dren, you can make a selection of the cards which would serve
briefer form of introduction. One such selection is as follows:

A Blocks	Color Cubes	People Pieces	Crearure Cards
$11-5$	$1-4$	$1-8$	$1-7$
$11-12$			
$16-21$			
23			
25			
$27-31$			

Successful work with children will require you to have in mind many deas from which you can work, not just a few which you try out one at a me. One of the best ways of acquainting yourself with these materials amily. Many people have found that they make rather good parlor games.

Please read the instructions on proble card A Blocks 7 belore open-

 ing the box containing the A Blocks.
Materials

You will need to order four separate items for Atribute Games and Problems:

1) The basic package which contains inree sets of boxed materials A Blocks - 32 wooden blocks, all different; 6 colored cord loops: and 20 label cards and 4 blank cards
Color Cubes - 60 wooden cubes in 6 colors
People Pieces -16 square plastic picture tiles, all different, and 8 label
cards
2) The set of problem cards which includes the following:
a cover card
a card with general directions
39 problem cards for use with A Blocks
problem cards for use with Color Cubes
16 problem cards for use with People Pieces
15 Creature Cards, which form an additional set of materials
3) The set of gummed stickers which can represent A Blocks and Color Cubes for mapping problems and making puzzle cards
4) The teacher's guide, which includes a replica of each ot the problem cards and a commentary on their use with children, and also offers cards ardound information on the learning processes involved in work with Attribute Games and Problems

When you have worked through the problems presented in the cards. you will begin to sense some of the possibilities which these materials open up. It may surprise you that some of the problems have been found this chapter will discuss the games and problems and indicate ways in which they may be presented to younger children. We will also discuss uses with older children, although it is our experience that almost everyhing we suggest tor younger children apples to older ones if a teacher es common sense The cards in this set have been numbered simply for purposes of ixed sequence tor working through the games and problems. while we have suggested starting with the generation of the set, we have begun with a matrix game with equally good results. Certain cards may not prove to be particularly useful starting points, but as you work wint the materials yourself, you will undoubtedly sense which activities provid ood introductions. Our discussion of the cards tollows me ordern the possibilities for rearrangement. As you work with children on a particular problem, it may occur to you in the light of your familiarity with he entire range of games, that a usefur next step mighr be a game whic cours well along in the series. Feel free to experiment with different derings and encourage the children to do likew ise

In general it is best to begin with the A Blocks problems and games. This does not mean that all of the A Blocks cards need to be worked through it may be desirable to intersperse some of the latter among A Blocks games.
In the development of these materials we have found ourselves reterring to various kinds of problems by name, but we have refrained from applying our own set of names to the cards. since names should arise atter
one is familiar with that which is being named you and the children may
well develop your own set of names for the various activities There are certain broad classes of attribute activities, such as sorting. mapping. $l o o p$ games, take-away games, question games, parring games, and so
torth, but these terms may not be the ones you and the children feel most at home with, and we mention them merely as suggestions These games can be played in many different ways you may choose to play with an individual child or a group of children two or more children may use the materials off in a corner: a number of children may
play among themselves with you on the peripher play among themselves witn you on the periphery. making suggestion when an adult is playing with children it is otten useful to turn the tables. to have the children present problems for the adult to solve Children gain skill in setting problems for one another They oecome adept at inventing games and p.oblems of their own it may also be
valuable for them to discover that they can upon occasion inventa problem which presents a real challenge to an adult: Another practica advantage in changing roles now and then is that doing so may give yo a chance to judge how much insight a child has ga ined into the nature Cards 19 and 20) tor examole a Child may take awatris op oroblem hat the matrix cannot pe reconstructed and this can be a point tor discussion. The main value of allowing children to set problems tor you however, is that it may lead to a greater sense of partnership na comnon endeavor-learning


```
Take out all the pieces and see what you can do wen mem
    Cow many ways can you buld with them?
    What do you think a Usual: construction mou'd look nave?
```

A Blocks 2 piece, or for "ano

Seeing the first small piece that matches a large piece already out can eexciting and may be followed by a bur requests for small piece enerating the set stimulating is that it reveals clearly to them their bility to think of things they have not seen. Although delighted with heir skill, children will not reaize that they are handling a complicate ystem of logical implications.
Children will often want - and should be encouraged - to follow this kind of introduction to the A Blocks by a considerable amount of free play on their own. Besides being fun, free play also lea
with the set which is a prerequisite for later activities.
Young children may not be able to name the pieces immediately. Some ive-year-olds may be learning the names of the shapes for the first time izes, children are apt to be quite redundant-the circle usually gets he most thorough treatment simply because there are so many good ames for it. One five-year-old, struggling for a complete label, came up with Little round small red wheel?
At this early stage children should be allowed wide latitude in their hoice of names. To avoid confusion you should eventually settle on one name for each size and shape, and use it consistently
After generation of the set and some free exploration, playing the followAfter generation of the set and some free exploration, playing the follo all the tock out where Put all the blocks out where everyone can see them. Name a piece, then
ask a child to point to it At first. children who are just learning to coor-
dinate the three classifying attributes of each piece will find it easier to point to the piece than to supply its name. (In our trial classes we generally named the pieces in a standard order- size, color, shape - and the children usually adopted this sequence. However. "red-circle-small" Play this scanning game and any variations you or the children can think of. For example, let the children take turns pointing out and naming the
pieces. As they play with the blocks in this way. children learn the names of the pieces quite spontaneously, often teaching each other. Some children, however, may need your support or guidance. In helping a child, it might be wise to back up and start playing the game with him rom the beginning:
T: Show me a large green square,
T: That's green and it is a square, but is it the large one? Can you find the large green square?
We feel that it is important to work with the full set of blocks. You might e tempted to simplify the process of learning to name the pieces by concentrating on just two shapes or two colors. We believe, however he entire set. and can deal with, the complexity and challenge the entire set.
fter playing these games with the children, encourage them to Afler playing these games with the children, encourage them to
hearse, repeat, and extend their experience through tree play.

COMMENTARY: A BLOCKS 2

It is important to follow the first problem with free play and. indeed children should be encouraged to return to tree play often. There is no need to make a distinction between work and play. The A Blocks usually make a strong perceptual impact: the colors and shapes are attractive and invite building. If the work captures children's interest and stim A Blocks may A Blocks may lend themselves to a somewhat different kind of play use
than do standard kindergarten building blocks. In one way A Blocks may than do standard kindergarten building blocks. In one way A Blocks
seem limited as building units. for there is only one of each kind of piece, it is not easy to construct elaborate castles because there are limited numbers of each shape out of which to fashion walls and towers. Building size may be limited, but the variety of structures which can be created is not. Each of the A Blocks is unique. One advantage of this
uniqueness is that children may be led to explore the exciting world asymmetry: even if a child builds symmetrically with respect to shape. he may notice that his structure does not have color symmetry. We have often noted that in their free play with A Blocks children begin rather conservatively with shape symmetry, and, as they grow familiar with construction.
Despite the endless alternatives for building with the blocks. a child may repeat the same basic pattern, perhaps with minor variations. he favors certain constructions. try, atter a while, to Interest thim in making something "new." s
has never been buit before.
Several children working around the same table may stimulate one another. There may be much copying, but this certainly should not be discouraged. A child may start out by imitating but he will probably end up making modifications and changes of his own

Line ot sight observation

Another way to encourage innovation building is to suggest that two children divide a set of blocks between them and build something on opposite sides of a screen
Children often derive considerable pleasure from building privately and then pulling the screen away to reveal their "surprise," or standing up and looking down on the other constructions.
A turntable such as a lazy-susan or an artist's modeling stand can be a most effective accessory to building activities. A large board-a threenuch more ro Masonite, for example - placed on the turntabie provides of the pieces as the building and dramatizes changing relationships is level with the buildings. As the structures are rotated. they change iselinually in appearang. As the structures are rotated. they change pearance and relationship and so become even ascinating
After creating interesting designs, children may begin to use the blocks as a basis for involved fantasies. They may represent buildings, people, animals, spaceships, and so forth. The liveliness of such tantasies will
often be sustained if the children are left alone to play freely, without any requirement that they analyze or interpret.
As he builds, the child is, in a sense, experimenting with symbol systems, systems of representation. He needs time to devise these tor himself. and to become aware of his own powers to do so. Our experience with children suggests that free building, free and imaginative use of these materials, may be related to the ability to appreciate and use such arb trary symbol systems as language and mathematics in later education may be better prepared to explore those presented to him in problemsolving situations.

A Blocks 3

Can you tell what has been changeod?
\qquad

COMMENTARY: A BLOCKS 3

This card introduces the students to two activities that recur throughou the problem sequence: classifying by attributes and identifying a piece dded to or removed from a subset (group). Students form subsets and play take-away games to become familiar with the attributes colo hape, and size, as well as with different ways of classitying the pieces ner, alternating turns in the take-away games and making up variations the suggested activities.
Younger children can be introduced to the attributes shape and color and to orderly arrangements quite naturally in a free-play situation. Atter wo or four children have been building treely with a set of A Blocks for while, you might ask them to share the pieces cquany them to think of more systematic ways of sharing the pieces. Four children may do this by color, each child taking all the pieces of one color. or by shape. Two hildren sharing a sel can each take wo colors. orw shas
There are several ways of introducing the take-away game. For exampl There are several ways of introducing the take-away game. For example
ask one child to close his eyes or to turn around while you. or another ask one child to close his eyes or to turn around whide youce of card-
child, remove or add a piece. Another way is to slide a piece or board between the child and the array of blocks in front of him and the emove or add a piece. Initially you may want to take turns playing with he children: atterwards, they can play this game (or any other they think of) with a partner
Take-away games may be difficult at first for some children. Perhaps the easiest way to introduce them is to encourage a child who has all the pieces of one color to place each small plece on top of the correspond is ing large piece. When a single piece is removed at a time may then be removed. Finally the eight pieces can be scrambled and a plece emoved.

A Blocks 4

COMMENTARY: A BLOCKS 4

Size is an attribute many students find troublesome in working with A locks; color and shape distinctions are clear and absolute, but size mparisons are relative. There is, in fact, a great deal of variation between pieces within the two size groups. OIder (or more analytic) students may point out, for example, that two small triangles are the
same size as one small diamond and, similarly, that two large triangles will just cover one large diamond.
Students may be encouraged to check the relative weights of the blocks as we did. (In weighing one set, we found the small diamond slightly eavier than the small circle, but the large circle was heavier than the arge diamond.)
With accurate measurements, your students may be able to find eight ifferent values for the attribute weight; two or four are more likely.
nvestigations of this sort can be very useful, especially in helping ol students understand that classification by three attributes represents an arbitrary decision to pay attention to certain features and not to others.

A Blocks 5

 diarem ands. as subset ot squares. and a subser ot circles The
sounare. and circle are called values ot the atribute shape What are the values ot the ettribute color?

$$
\begin{aligned}
& \text { What are the values ot the atrribute size? }
\end{aligned}
$$

COMMENTARY: A BLOCKS 5

To communicate clearly it is necessary for us to make the distinction between attribute and value. One way of looking at the distinction be-
tween the terms is to think of them as representing different levels of ween the terms is to think of them as representing different livelis on because "color" refers "color" il mossible costract that the while "blue" refers to a limited portion of the spectrum;so in this case "color" is the attribute
and "blue" is one of the values. The relationship between attribute and value is, however, strictly relative. For example, suppose one were dea ing with a large group of objects of different shades of blue. but all of group. and terms such as "sky blue," "light blue," and "navy blue would be values. Few students will be familiar with this distinction. bu hose at the junior high school level may be able to grasp the implica tions of their experience with these materials and to extend the idea of attributes and values to other situations. By the time your students are or their own "creatures
Especially with the younger children you should look for chances to usd the value and attribute names informally, playing games and talking with the children:
Which color would you like?
Do you want the circles or the diamonds?
Your size would you preter, large or small?
ally. Although they may startusirms will help the children learn them natu still be a good idea to check them occasionally and to help those who do not seem to understand.

A Blocks 6

 How many suosets ate here?
How many blocks sere in each subseet?
How
How so the pieces methin a subsel anter rom each other?
Can you name ine other groups?

If the child is encouraged to find one word tor each of these differences. he will soon become quite familiar with the attributes we are using Our title, Attribute Games and Problems, may prove helpful in familiarizing children with the word, whether or not they fully understand its
meaning. There is no need tor children to memorize or repeat any the words used in these activities: what is important is that they feel at ease with the ideas the words imply

COMMENTARY: A BLOCKS 6 AND 7

Like the words attribute and value, the terms set and subset are useful in defining the problem situations presented. Set, of course, is a com-
mon word-although it requires, in all its uses, almost two tull columns in Webster's Unabridged Dictionary! Most children understand its use in expressions such as a set of dishes or a set of blocks. older children may have been exposed, through one of the new mathematics pro-
grams, to expressions such as the set of all the children in the class or the set of all the animals in the United States.
Younger children will benefit from counting the members of various subsets:
How many small reds are there?
How many large triangles?
How many red squares?
Are there more large circles or more small reds?
Questions of this sort require the children to identify members of sub-
sets as well as to count them. While this may be difi sets as well as to count them. While this may be difficult, it is worth spending some time on because it can lead to a greater awareness of
the abstract nature of number -
Attributes and values are abstractions. We cannot point out a large
or "a yellow" without naming the concrete or "a yellow" without naming the concrete object assoclated with the
characteristic. Number is even more abstract because it is not a property of an object, but of a set of objects. in learning mathematics the stuoy of sets. therefore, should precede the study of numbers. When classit. cation and counting are combined, many children may grasp the ab-
stract nature of number more easily. For this reason, the problem sivi ions presented here may be particularly relevant to the problem sith earning mathematics
Two-Attribute Subsets
Card 6 calls tor subsets of pieces alike in both color and shape Card

size. and in shape and size. The problem of grouping blocks by two com-
mon attributes may be challenging at first because it involves a sequenmon attributes may be challenging at first because it involves a sequen-
tial process, a continual shifting back and forth between two ideas. Once two blocks a are matched correctly, however, the rest of the problem should become fairly straightforward.
It may help to have children focus on the one difference between pieces say (or for them to think). "These properies. That is, it may be easier to (or think). "These are alike in color and shape." Shifting back and forth between the use of positive information and the use of negative information is a valuable skill. For this reason the cards encourage students focus on differences as well as likenesses.
Until young children have become quite familiar with the individual itributes of shape, size, and color, they will not easily be able to deal with these problems. Here are some questions you might ask to determine whether particular children are able to deal with two attributes in combination:
Can you arrange the blocks so that each subset contains only pieces
of the same color? of the same color
Can you group the
Can you group the
same shape?
Can you divide the set of blocks by size?
How many large circles are there?
How many large circles are there?
How many red diamonds can you fin
How many red diamonds can you find?
How many pieces are yellow?
How many green blocks are there in this set?
How many of the pieces are triangles?
Count the number of small pieces.
Count the number of small pieces.
Count the number of large pieces.
If John takes all the red pieces and Ann takes all the squares, who will have more pieces?
(You might follow this by asking, Who gets the large red square?)

COMMENTARY: A BLOCKS 8

This problem requires a shift in focus. The student is asked to conside combinations of values instead of combinations of attribute
Those familiar with sets will recognize that this kind of classification
results in sets comprising the intersection of two values. The subset of results in sets comprising the intersection of two values. The subset o eight pieces. The intersection of the subset of red blocks and the subset of circles contains two pieces, the red circles.
The subset of small pieces contains sixteen blocks. The subset of squares contains eight blocks. The intersection of the subset of smal pieces and the subset of squares will contain four pieces. the small squares
For younger children a questioning game similar to that suggested a
the end of the commentary for Cards 6 and 7 may be helpful.

A Blocks 9

How mery duces ver eree in we susuet?

Form suben del we Deves mich vee evee ware or red the was How ment peeces see mere in mos woset
 Eitree trangies α green
Eane smel or ove?

A Blocks 10
PY Moveres becrs cos.
hee on a tre con en tre sece mer ve net crowe.
-

COMMENTARY: A BLOCKS 9

Card 8 deals with intersections. Cards 9 and 10 deal with unions. An intersection of the susset of diamonds and the subset of yellows con
tains two blocks. the yellow diamonds. The union of the subset of diamonds and the subset of yellows will contain all elight diamonds and all eight yellow pieces. Since two of the pieces are both diamonds and ellow, there will be fourteen pieces in the union.
Although this problem and the one on Card 10 are likely to be challenging for younger children, those who have had ample time to become Suppose this box can have pieces that are etther red or circle. Which ones will go in it" "It may be necessary to repeat the problem in a slightly different form betore the child understands what is intended "Red pieces can go in this box Is and it a circle?"

COMMENTARY: A BLOCKS 10

Apiece which is either red or circle may be red, may be a circie. or it may be both red and a circle (In everyday usage the words either and
or" are sometimes used to mean one or the other but not poth as for xample, "You may have einer a lollipop or an either red or circle" specifically includes the piece which is poth red and a circle)

The "not-circles" which are removed from the union of the circle set and the red set are all red. The "not-red pieces removed from the unio repeated the game a number of tumes. Many younger chiliaren may be itrigued with this kind of puzzie when you present it to them. w thou eeling the need for anaiysis.
th not especially important that students learn the terms -710 and Itersection It is important, however, that they have an opportunity th work with these contrasting situations
In presenting this problem verbaliy it is misleading to say purno the
box either the red pieces or the circles. and this is an easy mistake :o makerther the red dieces or the circles. and this is an easy mistare either red or circle can go in the box

Han rou answer the tollowing questions whour tooking at ne pieces
How many red piecess are there?
How many triangles are the
How many sman piecess
How many large curces?
How many small yelow piecees
How many larro ylue diamonds
How many oreen squares?
How many non-tea circies
How many non-square blues?
How many non-targe crangles?
How many non-cicicle, non-yelows

COMMENTARY: A BLOCKS 11

Students who are working directly from the cards may write the answers to these questions on a separate piece of paper and then compare their results with the results found by others who have done the same things. The analysis of this problem is fairly straight-forward. Since the thirtytwo pieces in the set are divided into two values of size, there must be sixteen pieces of each value: that is, sixteen large pieces and sixteen
small ones. There are four values of color, so there are eight pieces of each color, and the same is true of the values of shape.
Choosing a size results in a subset half the size of the original set $1 / 2$ $\times 32$). Choosing a color or shape results in a subset which is a quarter of he original set $(1 / \times 32$). If you choose pieces which are alike in both of shape, you will have a subset of two pieces $(1 / 4 \times 1 / 4 \times 32=2)$) If you choose pieces which are alike in color and size, or in shape and size, there will be four pieces in each subset $(1 / 4 \times 1 / 2 \times 32=4)$.
Younger children, for whom such an analysis may be inappropriate, may be able to answer the questions on this card intuitively. Those
trouble can easily count the pieces to determine the answers.

COMMENTARY: A BLOCKS 12

This card introduces the idea of representation, of mapping. Students soon learn that color mapping and size mapping are relatively simple. while mapping shapes may present a more challenging situation. Here are some good
older children.
older chilaren.
Suggest that the children make color subsets. As many as four childre cang play this game with one set of ABlocks, each child using a dittere color. One child builds something with his subset and the other children try to copy it. This task requires continual shifting of attention from the building being copied to the copy and back again
Some children may not be able to copy a completed building. You migh
want to vary the game so that the first child puts his blocks in place one at a time and the others follow suit, piece by piece.
Children may, at times, prefer mapping their own buildings rather than ose of other children.
If two children play, they can divide the blocks so that one child has all he blocks of two colors and the second child has all the blocks of the paying attention only to the shape and size a building made by the tirs he will have made a size and shape correspondence without making a color map.

It he uses his colors systematically to represent the colors used in the building he is copying, he will have made a size and shape correspond
ence and a color map.
Iosponneence: isive is mepoed br rereen and red is

Children may produce a mirror image of the original building. If they are encouraged to explore, they may realize that there is a difference be tween mirror mapping and direct mapping

Size Mapping

If one child has the small blocks and another child has the large ones. scale will be introduced into the mapping games. When the children map by size, they trequently set up color and shape correspondences me first child builds something involving large blocks of various colors and the second child tries to duplicate it with small blocks in the same color pattern.

Shape Mapping
All mapping consists of setting up representational systems a road ma epresents a network of roads and cities: an architect's plan represents nes, or vice-versa house large A Blocks are used to represent sma and in size mapping the representation is distorted because the form the outiine of the map difters from that of the original

Children may feel a need to shitt from the vertical to the horizontai plane in shape mapping For example, it a house is builh out of squares placed upright one upon another, a schemetic representation of it can

the table. It is valuable for children to experience many variations in representation and to begin to get a feeling for how a change in value ct the process of representation.
There is an interesting game that can be played with any one of these mappings. One person looks away while his partner exchanges one or person then changes either arrangement so that the mation. The first Mapping with Attribute Sticker
 to map what has been done with the A Blocks. The children can build a "city" with the blocks and then map what they have done by sticking the
pressure-sensitive stickers onto a sheet of paper.

Another way of proceeding would be to start with a map of attribute
stickers and to have the children build a city to correspond to this. Th stickers and to have the children build a city to correspond to this. The shape, and size on top of the attribute stickers. The next step will be to slide the map out from under the blocks so that the "city" and its map will be side by side.
No matter which way the city-mapping is started, you will now have a block city and a sticker city which maps it. To help children focus on the elationship between the two, it is helpful to suggest that a child "take a
walk" with his fingers through the block city while another child follows each step through the map made by stickers. When children are able o see the connection between the block city and the sticker city, you an challenge them to rotate the map and opoint.
It may be fairly easy for children to shift attention back and forth between he block city and the sticker city when the two are oriented in the same way, but many will be confused, at first, when the map is rotated 90° or 80°. Many of us have trouble with the problem of direction in mapping. fy you pose a series of problems in rapid succession. pointing to differen

positions in the city or on the map, many childre will tarn to find their way around quite easily, even though the map and the city are not oriented in the same direction.
Three sizes and six colors of shapes are supplied in the attribute stickers. Two of the sizes correspond directly with the A Blocks. The third size is a step smaller than the small pieces of the A Blocks set. Size mapping can be set up with the stickers by using the smallest stickers
to stand for the small A Blocks pieces and the medium stickers to stand tor the large A Blocks pieces.
If the A Blocks pieces are placed on edge, it will be necessary to cut the sticker material to obtain pieces which correspond to the base area of the blocks.

Puzzle Cards Made With Attribute Stickers
There are many possibilities for making puzzie cards using the attribute stickers by themselves. You may wish to make up some of these for you
own students, or your children may enioy other.
If you plan to use all three sizes of the attribute stickers, you will probably wish to mount them on tagboard or some form of card stock. Sheet that are $81 / /^{\prime \prime} \times 11^{\prime \prime}$ would be a good size for this. These could be used by individuals or small groups of children or they could be displayed on a be used. In either case, the missing pieces could be changed from time to time. since the pressure-sensitive material can be reused several times. It is also possible to stick the missing piece to the back of the that the puzzles are self-checking
The range of difficulty is so great and the kinds of problems so varied
that we are supplying suggestions and material for that we are supplying suggestions and materials for you to make you which will be appropriate for most five-year-olds. Others will be chal lenging for many grown-ups

Many teachers who have played the games and worked the problems suggested in the problem cards have reported that there are so many possibilities with the A Blocks that they have a hard time rememberin cards can serve as useful reminders of problems that are appropriate. as a record of the kinds of things which have been done. and as a means of assessing what children have learned and diagnosing the ditficultities they may be having. We are including examples of possible puzzle cards in the places where they are related to problems discussed in se text.
There is no necessary order for these. You will soon get some sense of the order of difficulty when you make up cards of your own for your students.
In many cases the line between a problem that is easy and one that is too difficult to solve is a very narrow one. Students may tind that puzzles too difficult to solve in card form are readily solved when the same who solve problems easily from these indicate clearly that they know what they are doing. Those who have trouble show that they need to have the problem presented in another way. perhaps with the A Block or go back to an earlier level so that they can gain skill through practice and develop contidence in what they are able to do.
Mapping With Puzzle Cards
Color-mapeing sing all provide interesting possibilities for puzzle cards. Any of the illustrations on page 21 would serve as a good basis for a puzzle card. All that needs to be done is to copy these arrangements with the colored stickers and to leave out one or more pieces from either part of the pat
tern. There are a whole range of puzzle cards which would be appropriate for five-year-olds who have played mapping games with the A Blocks. The same type of problem becomes more challenging if two kinds of mapping are done simultaneously or it mirror mapping or rotations are included.

oftentimes children will spontaneously make mirror maps Mirror mapping blue is mapped by yellow and red by green, but on gure is the mirror image of the other

This is a case of size mappin which has been dine tiverct one figure has been rotated
Mirror mapping and rotaina rovider challenges.

$?$
 ??

size mapoing with rotation

a Elocks 13

Nnsacominn

COMmENTARY: A BLOcks 13

This curd presents an exercise in organcing expervence not a tast of memor Uniess the, have developed some abily in classitying, ohit dren a ho are perfectiv tamiliar with the blocks and know their hat. pot visibie. Tmi problem gives onidiren a chance to revew and consolk sume a skill uney startad to exercise at the very begioning of their work wan me A Biocks For some oflidren it may be helptul to repeat this exercise occasionchance to discover his growing power to organice a considerable segree of complexity.
Children who are slow in learning the names of the pieces can be heiped by a game such as this place all the blocts on the table and ask the midto point out the piecos as you name them. For variation, allow hu , turns playing the game among themselves without you. As a piece amed by one child, his parther can place it in a separate pite

A Blocks 14

- mossinun
smens of treat wive

Shem	Sme	sio
Now	\cdots	\cdots
somow	गwimem	

COMMENTARY: A BLOCKS 34

This exwiss can head to the oiscorery that multiphonty the numt ralues of each attribute yedds the number of pieces it the suaset ac explaines in the commentary for Card 11 . Such insight is nowe att s occur to cher Children, but some younger children mav also tins th anabsis interesting.

A Biocks is

A Blocks w

```
Naven
```



```
*Nmow
maxemum
```



```
Nom
monventwo
mywancown
```


COMMENTARV A BLocks is

 This is another problem which mav be moly Appughate fur chasion

 problem

commentark a mlooks 18 and it

 Whes hist the anareness that the subel

 we
II is texertant he vary the wot ceth umat ont that

mutset reu may wait to pa- Hu, Nios
not that they are whtorent … ... athe

 prezention

 -

 Roworn

Come in pairs such as stoes and mithens it may de tun to pretend that the preces in an eigte-olock subset are an assortment of souks to de worm m warous combinations, Once the first psinng is maoe. chiliten may De quine reading sole zo compleve the tast of painng the ofher peices with the same common differences

Poperm cerz 3 tor tre 2 300ts sugpest anc playng the game of remowng of asaing a piece ithe seme problem could je given on a purate card

The preces in the subset con se set out ather at ransom or in some
order
If the pates are datriund at ranoum the problem s sum ar what invowed in genersing the set in the inst riace Ris ustu is nture carss whion heve o ter

 guens the rue can de stamed rea or share the puves oum a on brent subsel trom the nsersection of rec anc wurre wns …Nuce ust the rec spueres
 andren mough a wouls se worth symy so

A Blocks 18
Tate ar ve velow ans al tre gieen ordies anc diamonds and arrange
not retom
not somen
not metal
when peece s n^{\prime} ?
Noomer perece in the set is not targe is a arcle and is not yellicil
whicn ouece is mis?

Can you play me game mitrout too
can rou day me oame mitrut looking at the piecess?

COMMENTARY: A BLOCKS 18

The game introduced on this problem card can be particularly helpfu in the development and use of efficient classification schemes. It is
similar to one the children may already know. "Twenty Questions." similar to one the children may arready know, "Twenty Questions,"
except that with this subset of blocks it is possible to find out the na of the piece someone is thinking of by asking just three questions. Older students should have no trouble understanding the problem and should be able to play the game directly from the card.
The first thing in helping younger children play this "three questions" game is to provide step-by-step information that will lead to the selection of a particular piece from a given array. Assume that you are using
a subset composed of two sizes: large and small; two colors: red and blue; and two shapes: triangle and square.
Until children are familiar with the game, it is probably best for you to provide the information all in one form-either all negative statements or all positive statements. If you make all the statements positive, the game is relatively simple, and for some children this may be the best way to start
I am thinkin
of a piece: it is small; it is blue; and it is a triangle. Which one is it?
Once the children can identify pieces from positive information you can proceed to all-negative statements:
am thinking of a piece: it is not red; it is not a square; it is not small
Children may have trouble with negative statements at first because each statement carries with it an implication: if the piece in a subset such as the one above is not red, it must be blue; if it is not square, it must be a triangle. If children have difficulty with such implications,
there are two procedures which might be followed: you could work with a more restricted subset of only four pieces or you could use the eightpiece set but help the children see the effect of each statement by actually removing, or having them remove, the pieces which the statement eliminates.

Removing pieces may help some children, but they should be encou aged to try the problems in their heads first-without moving or blind, mechanical process. otherwise their learning can become

Once the children are familiar with this procedure. begin to alternate positive and negative information in your statements. Using the sam am thinking of a piece that is biue,
Which one is it?
Keep changing the pieces in your eight-piece subset and play the game ntil the children can answer quickiy and confidently. Like all the games on these cards, this one should be played by children with each other. as well as with you. You may want to turn the game around and have them.
A further challenge for children who have learned to play the game with he pieces in front of them is to have them play it with their eyes closed. or simply with information about the subset but without the actual
blocks. .
to detert stage is for children to ask questions about a subset in order to determine which piece you, or a child, have in mind. Still considering is itred?
No.
Is ita triangle?
Yes.
Yes.
Is it small?
Is in smal
No.
Then it
Then it must be the large blue triangle
Eventually children will become so adept at dealing with the eight-piece subset that you may want to move on to consider the entire thirty-two piece set. You may again wish to start by making statements about the

A Blocks 19

$\underset{\substack{\text { red } \\ \text { square }}}{ }$			momend
	s.een		
		$\underset{\substack{\text { recoue } \\ \text { crese }}}{ }$	
			Duen

Can pou combete ens strangement usna the rest c the sman biccio?

Sat someone to remove one ot be p

piece in question. rather than by having children ask questions.
Playing these games with the entire set presents great challenge uniess
the set is organized in some way. We suggest that before making statethe set is organized in some way. We suggest that before making statements, or having chilaren ask questions. about ine entires carc.
be set out in some sort of matrix, as suggested in the next carc
There is an advantage, when children are tamiliar with the "Twenty There is an advantage, when children are tamiliar with the "Twenty
Question" format, in starting off without having a specific piece in mind You can allow the values of each attribute to be determined by the
child's questions by saing "No" to each of his first three questions abou an attribute. With some children the questioning might even proceed as
follows:
is it green?
No.
Is it blue?
No.
No.
Is it red?
Is it red?
No.
Is it a square?
No.
Is it either a triangle or a diamond?
No.
is it small?
Is it smali
No.
Then it must be a large yellow circle.
Since there are now four values of each attribute, your statements can present information in a number of ways, and the concept of implication can be broadened. If you say. for example, "Tm thinking of a piece that s not red. not green, not yellow," then it must be blue, But if you say. to identify the particular value you have in mind.

COMMENTARY: A BLOCKS 19 AND 20

These problems present matrices as a method of classification. Some
children seem to grasp the organizing power and the elegance of the children seem to grasp the organizing power and the elegance of the
matrix almost immediately, and are quickly able to soive farily complicated take-away problems. Many five-year-olds - and many adults have become fascinated by the way in which the matrix, with its dual organizing principle, makes quite simple what might seem at tirst
glance an exceptionally difficult task.
Some children may need help in analyzing the matnix before they are able to make use of the principles involved. You might say, for example Can you point to all the square pieces
where are all the reds?
Where are the large pieces?
Some children may find it difficult at first to name a piece which is
removed (or covered by a card or a cup) In order to state what is removed (or covered by a card or a cup) In order to state what is missing hey must coordinate two separate ideas - the dea or shape and the ide find it difficult to shift attention from the rows to the columns and bach again. These children may be helped it the matrix is placed on a sheet of cardboard or on a turntable and rotated slowly so they see the rows and
the columns alternately. Surprisingly some children actually seem to the columns alternately. Surprisingly, some children actually seem to
find complicated problems, involving the removal of several pieces from a double matrix. easier if the matrix is being rotated in this way A four-by-tour grid made with $\% / \%$ tape on a table or a ruled plece

A Blocks 20
Using the e large blocks maxe a matrix. which is ditferent trom the one
you mace min the smal peeces (Cara 19) Without chenging the postions ot the pieces within eitine matrix place

She matixix stacked on another in this way is called a double matrix Ask someone to remove one stack of two blocks trom ine couble matrix
Can you tell which piecees are missing
ave turns reemonng stacks and naming the misssing piecess unt you and sour bornee can
he single and double matrix can be used at many different levels. Quite range of difficulty can be built into matrix puzzle cards.

D	?	?	
?		?	?
?	?		?
?	?	?	-
	?	?	?
,	-	?	-
\square	?	?	?
	?	?	?

,

A Blocks 21

```
*)
parss. color is then common Dotetere
    Mow many wyys, ze, ,
    How many wars are there Ol Dit
    ommon orterereces?
    How many wysy ser the
    Can you tind out the tora number ot possobie paris tor mismegmm-piece
    Did you include fuplicate pars?
    Sony y you can ",
```


COMMENTARY: A BLOC

Some students may be able to analyze the problem and answer all the questions on Card 21 without using the blocks. Here is the kind of analysis that is involved
There are three ways of pairing the pieces so that in each pair there is the same difference - that is, so that there is one common difference. There are also three ways of pairing the pieces so that there are two common differences.
There is only one way of pairing the pieces so that there will be three
The problem becomes more manageable when some sort of recording The problem becomer more torm of tabulation:

Each of these seven different ways of paring produces four pairs so there are twenty-ight possible pairs.
A different way of analyzing this problem is to reason that every block in the set can be paired with each of the seven ors There will be fifty-six pairs, half of which will be duplicates
Younger children may enjoy this problem but they will probably ap. proach it less analytically You may wish to make use of the attribute which we have found useful is to present a child with a set of eight
stickers and a card on which to place one pairing Before he sticks further pairs, he can be asked to check the cards carefully to see that the ways of pairing are discovered.
When the seven cards have been completed, children can be encour aged to name the basis for the pairings on each of them Questions such as "How are the pairs on this card different?" or "where is the color difference card?" may help them become more aware ot the basis for he pairs they have made
There are a number of games which can be played with these cards it iteresting. for example, to make a rapid search for a pair which is named:
Where is the pair of small yellows?
Where are the red triangles?
Where are the large circles?
where is a pair which has only yellow in common
Some Examples of Pairing by Common Differences
This illustration of pairing by common difterences provides a good basis tor making puzzle cards with the attribute stickers. Any one of these cards could be made into a puzzle card by removing one of the shapes Of course, it would become quite monotonous to use lust these shapes and these colors every time
One Common Ditterence
0 (2)
0

Children who are having trouble with the cards can be helped by you posing a number of problems for them in rapid succession with the
A Blocks.

COMMENTARY: A BLOCKS 22

This game may be especially appealing to younger children, though it need not be restricted to them. Although only shape and size can be sensed by touch. the child may determine the color of the piece hidden in the cloth by a process of elimination when he has the rest of the set font of him Children may be surprised by their ability to solve this problem.

A Blocks 23

ana puls, on ine table where botm of rou san soe "t

 pieco in me oiner pertons soo,

COMMENTARY: A BLOCKS 23

his game is similar to the other naming games suggested. This tume however, each player makes a hypothesis about the pieces in his part or s box by looking at the pieces in his own box and at those already
on the table. The strain of making up hypotheses. testing them. perhap ejecting them, and starting again, may make some children uncomrtable until they are able to work out elticient ways of artangeo and scanning their blocks.
The game may be simplitied it it is turned into a team endeavor. two of ee children working with each box taking turns making hypothose nother way to make the game easier is to put the pieces which are Aaken from the boxes out on the table in the form of two matrices side side, one for the large pieces, one for the small pieces. this makes this game to the matix games suggested on Cards 19 and 20

A Blocks 24

$$
\begin{aligned}
& \text { rown }
\end{aligned}
$$

COMMENTAEY: A BLOCKS 24

This game requires children to discover a ruie by lesting specific infor them to apply the kind of reasoning they have been doing about class elationships and to extend their explorations to problems which are more and more complex The game can be played at many levets of Stficulty. A simple rule to start with might be that all the big pieces could the not-green, not-circles - that is, all the pieces which are not green and all the pieces which are not circles. This game is suitable for a wide ange of students because of the many possibilities for making rules. in making up rules students may shift between those which involve int sections (for example. small green pieces) and those which involve unions (for example, all the small pieces and all the triangles) Athou nether of these terms has bsen introduced on the cards, students who mealing with unions and intersections, and those who have studied seit in their martematics classes may be aware of the cistinction. t is not necessary to know the terminology, however, in order to play the game satistactority
The game requires considerable fiexibilty in forming and rejecting rypotheses about the rule if ons is trying to choose as few test pieces as
The requirements of this game may encourage students to look for tien few pieces which do go into the box are all either red or yelliow a reasonable typpothesis might be that none of the greens or blues go in. and the student might group together all the greens and the blues and ask whether any of the pieces in the group go into the box. Depending on the answer. further groupings could be tested. Or indrvicual pleces
covid be tried. The game permits the use of a wide variety of strategies

In this case, a subset of red and blue circles, triangles. squares and diamonds has been used, the large pieces being separatec trom tre small

in this problem one line separates the squares from the not-squares. and the other separates the large from the small pieces. This is a variation of a two-loop problem.

From a set of yellow and blue squares. circles. and trangles, a subset is formed of pieces which are either circles or yeliow.

A Blocks 24

 Wether or not 4 berongs in the bor accecrong to your vive in doses

 oscovers whas rout tule en the obicct ot tre same
Wout ive ater testing ass fex piame der ive covis de matal the red Thete ere mady the Doss
 You coula say thal all he sauve not buve perce

You nos
men out

OMMENTARY: A BLOCKS 24

This game requires children to discover a rule by lesting specific in ances to see whether they contorm to it it provides an opportunity for them to apply the kind of reasoning they have been doing about class relationships and to extend their explorations to problems which are more and more complex. The game can be played at many levels of ditficulty A simple rule to start with might be that all the big pieces could o in the box. An advanced rule might be that the box could conkain he not-green, not-circles - that is, al the pieces which are not green and all the pieces which are not circles. This game is suitabletor aw ange of students because of the many possibilities for making rules
res suden may shift between those which involve inter In making up rues slu, small green pieces) and those which involve nion (fores alt all the triangles). Althoug der the cards, students who neither of hese terms has ers onds 8,9 , and 10 have been . their mathematics classes may be aware of the distinction. It is not essary to know the terminology, however, in order to play the games satisfactorily

The game requires considerable fiexibility in forming and rejecting ypotheses about the rule if one is trying to choose as few test pieces as ossible - that is, if one is trying for an elegant solution.
The requirements of this game may encourage students to look tor methods of testing more than one piece at a time. For example, if the rst ew pieces which do into the box are all either red or yellow, a reasonable hypothesis might be that none of the greens or blues go in, and the student might group together all the greens and the blues and nd the student might group together all the greens and the blues and the answer further grouping could go tested or individual pieces ould be tried The game permits the use of a wide varity of trategies

In this case, a subset of red and blue circles, triangles, squares, and diamonds has been used, the large pieces being separated tromine small.

in this problem one line separates the squares from the not-squares, and the other separates the large from the small pieces. This is a varia tion of a two-loop problem.

rom a set of yellow and blue squares, circles, and triangles, a subset is formed of pieces which are either circles or yeliow

A Blocks 25

Tase inice of the loops trom the A Blocks box and put them on the lable It ther take up too much space doutie them up hase this

Chosse a block -il doess not malter which one Pilace mins block on he Table outsde of the itree boops in the thist loon place an the bioch hat odter fom it in one way in the second toon piace alt hose the the liocks that dititer trom it in thicee wars

Chorse a ditionern bion
so 11 quickly and essity

A Blocks 24

Card 23 presereted a two box game heo is a one-box game Spied ait me elocss on the labie invent a tule mat will teil which peace the orared
 Nethe or not t beiongs in the bor accoliang to vout twie it it oces
 ne et t tre to see whetere or not the velong in the bor untine aiscows wat rour nule is The obpect of tre so
Thecte are many other posstoct viese One vile coula be nat al the red

 sou cuild say that al the sauste not bile pivecer
men out

COMMENTARY: A BLOCKS 2

This game requires children to discover a rule by testing specific in tances to see whether they contorm to it. It provides an opportunity ior them to apply the kind of reasoning they have been doing about cla relationships and to extend their explorations to problems which are more and more complex. The game can be played at many levels of difficulty. A simple rule to start with might be that all the big pieces could go in the box An advanced rule might be that the box could conain hhe not-green, not-circles - that is, all the pieces which are for wid and all the pieces which are not circles. This game is suitable for a wic range of students because of the many possibities for making rules
in making up rules students may shift between those which involve in sections (for example, small green pieces) and those which involve unions (for example, all the small pieces and all the triangles). Airnoug neither of these terms has been introduced on the cards, Stumis w have worked through the problems on Cards 8,9. and 10 have bee dealing with unions and intersections, and those who have sudis not in their mathemaks classes mower in order to play the games satisfactorily -
The game requires considerable fiexibity in forming and rejectin hypotheses about the rule if one is trying to choose as few test pieces as ossible-that is, if one is trying for an elegant solution

The requirements of this game may encourage students tolookior methods of testing more than one piece at a time. For example, if the lirst lew pleces which do go into the box are all etther red or yellow, a reasonable hypothesis might be that none of the greens or blues go in, and the student might group together all the greens and the blues and ask whether any of the pieces in the group go into the box. Depending
 could be tried The game permits the use of a wide variety of strategies

In this case, a subsel of red and bives. squares. and diamonds has been used, the large pieces being separated from ine small.

In this problem one line separates the squares from the not-squares. and the other separates the large from the small pieces. This is a varia tion of a two-loop problem.

From a set of yellow and blue squares, circles, and triangles, a subset is formed of pieces which are either circles or yelliow

A Blocks 27

ange mea A Bloch

not tue thangoses
not
notange
Note trax the name ot exch ot heses subsests peters to vives ot cior and

 not thangles isis suv
bive not trangles

COMMENTARY: A BLOCKS 27

, be by combinations of values a negations At tist it may be easier for younger children to select roups as you name them. rather than to name groups atter they have been selected. You might start, therefore, by having the children mak subsets as you
been formed

Begin by asking for the subset of blue triangles. Then ask the chidren to make the subset of not-blue triangles. If this new term is not under. ing subsets by values and negations of values
When children can form subsets easily, present them with already formed groups, such as the tour shown below, and ask them tor names.

 zes includere in
tor this same
Put any two tooss on the tabie Put al the reop pecces masice one loop Nosest ant the pioces in the boop must have the value somonn or the What have you done sbout the les squase piocer
 Cop must bo anl the squate pieces and only the squarto piceos.
Maxo up a ditcoeren probiem Choose values tor otherent combinationa
 cu playing hins aman

A Blocks 29

\square
Suppose you have
the otree Thangle
放 whot

Make up ather probiems ine these
Can you name the speces without putting me biocks in them?
Imagine the blocks and lopps and in naming the subsets

COMMENTARY: A BLOCKS 28 AND 29

Card 28 presents in concrete form, using the loops, the same kind of problem dealt with in Card 27. By now, children may be familiar with the characteristics of individual blocks. and they may be familiar with classes of blocks, but they may still not be able to shift attention eas-
ily from individual blocks (as, the large green triangle) to classes (as all large greens) and back again. The loops enable children to focus on classes without losing their awareness of the attributes of specific pieces. Even though they have been making use of the fact that eac block has three attributes, some children may be surprised when the class membership of individual blocks is made visually explicit.
Card 28 does not suggest to students that they overlap the loops: we do not discover it. Card 29 spells out the problem more explicitly. Notice that the space outside both toops is as much a as are the spaces inside the loops as are the spaces inside the loops.
Many first graders have enjoyed two-loop games with the blocks: played loop games with negations
While it is likely that children will find it more difficult to work from a graphic representation than from the blocks themselves, it may be that some young children who have become quite familiar with actual loop games will be able to deal with them on puzzle cards.
The problem can be to determine the labels of one or more of the loops. the contents of the loops. or both in most instances children will find it necessary to have certain information in order to complete the it is probably useful to present these problems in many difterent torms.
Puzzle cards which call for the use of negative labels are apt to be more challenging. Older students might explore levels of difficulty by making up problems for each other

Maxo the tolowing subsots sman y yolow cricies manl y poliow not-circices
 smal not pollow not.crictien not -mall yellow not ciricles

A Blocks 31

Atango any thicee ioops ans label inem ine inis

You mill not need the N itbeet

 its piecese and oniy its precess

Hame each of the subsests you nave maso incluaing the wobere of piecees Sultice en the loops
avios tom those useas here
 \title{
COMMENTARY: A BLOCKS 30 AND 31
}
 \title{
COMMENTARY: A BLOCKS 30 AND 31
}

These cards repeat, with three attributes, the type of problem presented with two attributes on Cards 27, 28, and 29. While the task are essentially similar to those on the earlier cards, the addition o a third attribute makes the game considerably more challenging. There are eight subsets instead of four. When the three loops are used, as on Card 31, seven of these subsets are inside the loops and one is outside.

As with the iwo-atribute games, It will probably be easier for children to construct the subsets as they are named than to name already formed subsets. Many younger children may be able to form these eight subsets if you name the subsets for them. They will need to be quite familiar with the A Blocks before they can play the three-loop game described on Card 31

If, in making up problems of their own. children choose two values of the same attribute to use as labels, they will encounter the empty set We discuss this on Card 34, but the children will naturally discuss it if it arises while they are working on Card 31

A Blocks 3

tay out the three-loop pastern using any theee loops.
abel each loop with ite negation (N) of a value One laber might be W. Green. anoliner N. Circie o third N Smal Place blocks in the proper
 Not circeses and only inese pieces must fo in the N. Circie tood etc
Ore wobset wovit contan the sman buve source
all he smal bive pieces trat re not squares etc
"I necessary seep track ot the subsels rou maxe or isting them on a
separate fiece of paseet
Subse 1
Subsel 2

When you have tormed all possibie wobsets set out thee bops sy hou


```
Cnose a omtremen value tor each atmbute
```

Can you magne and name the subsets which could be tormed using these aviues mithout using the biocks?

COMMENTARY: A BLOCKS 32

Cards 30,31 , and 32 present a sequence of activities, each of which builds upon eartier experiences. The games suggested on Cards 33 , 34. and 35 may be difficult unless the student is thoroughly familia with the activities presented on Cards 30,31 , and 32 .
On Card 30 , subsets were named and the student was asked to make them.
On Card 31, a visual representation of subsets was created by the student, first using values suggested to him, and then using values he decided upon
Card 32 asks the student to make subsets and then name them. Naming the subsets formed from the combinations of values and their negations calls for considerable flexibility in coordinating a number of ideas The table suggested on Card 32 may facilitate this coordination. When completed it looks like this:

	Large	Red	Diamond
Subset 1	\checkmark	\checkmark	\checkmark
2	\sim	\sim	x
3	\sim	x	x
4	x	x	x
5	x	x	\sim
6	x	\checkmark	\checkmark
7	\checkmark	x	\sim
8	x	\checkmark	x

subsets are formed, placing them in the appropriate spaces In a labeled three-loop pattern may help the student grasp more firmthe subsets formed when they use the loops, older stuctice naming able to master the complexity of creating eigh subsets whot usin the loops 4

Some people find it easiest to handle negations by turning them into positives-by considering "he values which are not eliminated Othe Many people will find that atter they have turned negatme positives for a while they will no longer need to do so
if studenis make up other inree-loop games with negations in ado. fion to using the combination of values suggested, they may encounter the empty set if two of the labels are not-large and not-sma then the intersection of the loops with these labels cannot contan Emply sets, sare explained no pieces that are neither small nor large Emply sets are exple most likely to occu

Note. Many children have enjoyed playing a not game in a more general context. For example, you might hold up a pencil and as. What is this not?" After collecting nots for a few objects which ine children may suggest, try asking the question, "What are you not? Children have had fun, after they have listed some of the things the ,

Once agan ioy out the three loop panteen Shutte the set ot tabel caros both postive and nogative waives and negations ma, occut for eram. Die two of yout Iabolis might be ralues of ine same attibute syi ced
 ind sinco no block an empor see

were and were not, drawing pictures of items from their own personal lists. It often seems to surprise children that there are more things hat hey are not than things that they are. We have found that some "Im not aler listing nouns that they were not ("I'm not an elephant," t adjectives ("I'm not hungr"), participles ("I'm not running"), and pronouns ("Im not you")
Most people find it more difficult to deal with combinations of positive and negative labels than with negations only. Card 34, which suggests that labels be assigned randomly, makes it probable tha difficuit it is iosp will occur. The questions asked on the card are outside the loops by a difficult to predict the number of pieces lef comes harder and harder to keep in mind information already gath ered about pieces that have been excluded from various intersection tray help, at some point, to use paper and pencil to keep track of this information.
It would be unrealistic to expect all older students, or even adults, to be ready to respond to the challenge offered by these problems. We have referred to "manageable complexity." It is at this point that these games, while still manageable, become more and more complex, and people differ in their taste for complexity

A Blocks 35

Ween rou teei sure you nove mastered the previvust trice loop games isel cards Choose a labei tor each loop and place en lace como ty its 1000

Your patiner must discover what hel labes of the three loops we er Pacing pieces in the sacces and finding out trom you whetree tiey嫁 and there max be more pieces in some spoces than in others

In order to give correct answers to your parther pou aer wat 10 are smal diagram tor rourselt shomna the loveis you have ofven to the piece is correctly placeco onir it tis in is unique sesce-that is ther inside one of the seen soaces created by the loops or in the space outside the loops

Amuch more atificuir verson of this game can bo cestec or using onis negative 1 abbels and teling your partiner that you cre using onily negative
1asols The most oiticuil version reequires you to use any combination ol lubeis not teining your partree whetier they are al postive ali negative or a combination

Much of the aiticulty of these games stems trom the diticulty of

COMMENTARY: A BLOCKS 35

The games suggested on Card 35, all of them difficult, nevertheless range from one which many older children will be able to play quite successfully-the two-player game with only positive label cards - to arme which few adulis may be able to manage-the two-player game with labels chosen randomly, leaving open the question of whether they are all positive, all negative, or a combination. It is hard enough o play this game knowing that the labels are etther all positive or all egative. When there is the possibility that they are mixed it become xceptionally difficult to remember all the information you have obtained from each trial

A number of first- and second-graders have learned to play the two Aoop hidden-label game. The child in charge of the game needs to be a has worked very well.

A Blocks 36

$$
\begin{aligned}
& \text { Wothng through Cards } 19 \text { and } 20 \text { you constructed a matixix in }
\end{aligned}
$$

> robiems that toliow combine the metrix and the common difterercice decas
> First arrange all hivit: -wo A Alocks into a matix x so that in the rows adizent pieces dither trom one another in one athbutb and in the
matrox might look lise mis
Now ty a much more ambitous matix which is something ine the
coubie matrax you buit eactioc tor card 20 This matix will conssit of
Colums Adiacert piecess in the owns will olthe in one atributie. asjaceni
pieces in the columns will ditter in two athnoutes the two piecess in each
stack will atter in all hree atributes You mill end up win matrix on
luck

OMMENTARY: A BLOCKS 36

mber of earlier cards ($21,25,26$) focused students' attention on Atteres The probems on this card provide additional practice in lin with two, and three differences, and present a formidable hallenge for the student. The second problem, involving a double solved by one thirteen-year-old in fifteen minutes
frist, many students will find that they need to focus consciously on A subsets of piese which con placed in a given position. One解 had considerable practice in dealing with their values, and still be slow in identifying pieces which possess specific combinations of alues, as required for various positions in the matrix. With practice, however, it may become possible to proceed much more rapidly. shifting quickly between simultaneous awareness of the emerging pattern and sequential attention to individual pieces.
may be advantageous for two people to work together on these rabs, especially it difficulty is encountered. It is easy to make istakes when trying to coordinate differences in attributes in two rections, let alone three, and if two students work together, perhap aking turns adding to the matrix, they can check on one another. variety of puzzle cards can also be made which involve differences between adjacent pieces. These could be in a line, a cross, or some other configuration. In most instances there will be several possible answers

One-ditrerence ine

Two-diflerence ine

Three-diliererce ine

Two-dilterence cross.

A Blocks 37

Herna game nalubloa niour by puting tase on a tabie

The first plarere places a piece in any ot the sascess The second pilare may play in any space. but it he piscess a piece next to ore which is
 others in intree wess \qquad

Can you till in al the spacces?
When you are otie 10 piey this game essiv, tery changing the nite so that in two wat

COMMẼNTARY: A BLOCKS 37

The three-difference game on the four-by-four grid is easier for mo players than the two-difference game. The basic problem is the sam as that suggested on Cards 25 and 26, but there is the added compli cation of arranging the blocks so that a piece added is different in the prescribed number of ways from the piece to the left, to the right, above and below.
The point of the game is to see how many pieces can be placed on the board. It may be that more pieces can be placed on the board if some of the other pieces are rearranged. A different game may be played by dividing the pieces at random so that each player is limited to his own group of pieces instead of drawing from a common pool of the complete set of A Blocks.

A further variation of the game results if the object is to block the other players so that they cannot move. Students should be encouraged to vary the rules so that they may see how different limitations change the problem
Another form in which to present this problem is to use either all the large or all the small pieces and to arrange them in such a way that there are two differences between adjacent pieces. All sixteen pieces can be placed on the four-by-four board in such a way that there are two differences between adjacent pairs, horizontally and vertically, though most people will find this quite hard to do. This same problem is stated in a different way on Card 39. Students who have been able to solve the problem in one form but not in the other will be surprised when they see the relationship between the two.
The two-difference and one-difference problems are apt to be quite difficuit for most people. It is usually much easier to work on these with the actual A Blocks, a four-by-four grid, and a partner
Adiacent pieces aitrer in who wars.
norizontaly and verticaly

$?$	-		
\square	Δ	$?$	
$?$			
		$?$	$?$

horizontaly and vorticaly

A Blocks 39
 diticult

Use etree tre arge pireces or the wall pieces
Arange them in a tour-by tour rauare so that thero is one piece of
each color and one piece et esch shape in each row and in each
Don t be surposised it you have atiticulty with this probiem Most peoopil Oen ibe sutp nsed it you have afticultry with this probiem Most poople Cubes thest
"y you are able to do this probibem in to remember now rou reached your
 it domn stuvy mat you have done and. it possibibe compare your solution

COMMENTARY: A BLOCKS 39

This problem requires one to check both rows and columns for color and for shape. Many people find this difficult. While it is not hard to establish an arrangement that meets either the color re quirements or the shape requirements, it is hard to the same time. Transposition of pieces will affect both the shape and the color distribution, of course
It may be helpful to call the student's attention to the number of colors in the diagonals or in each of the quadrants.
givit the red, green, yellow, and blue loops in the toliowing pattom

[^0]
Color Cubes 2

 have constructes as many bultangs as posvbie
Hour masantments?

Cine the eopses cretululy mithout ossurtung the owiangs.
Can you stan toll now tre cty was pianneed
Suppose mas rou turn the nite zound and say mata a space mary heve
 What will he city iook ine?

COMMENTARY: COLOR CUBES 1 AND 2

The problems suggested on these two cards are suitable for a very wide range in age. Here is a scenario which we have used quite Teacher:

Do you know what a city planner is?
Child:
${ }^{\mathrm{N}} \mathrm{No}$
T. Do you know what a dogcatcher does?
C. He catches dogs.
T. What does a back-scratcher do
C. Scratches backs.

Well, city planners plan citities I am going to show you the plan for a city and perhaps you can figure out what the city will look like. (Put out the four loops in the pattern suggested on Card 1.) This is the plan the city planner has made for his city. These buildings certain buildings can in the spaces made by the loops, but only go here, for example. (Place a red cube in one of the spaces go here, for example. (Place a red cube in one of the spaces
which is enclosed only by the red loop and no other) Can you which is enclosed only by the red loop and no other.) Can you tind where the rest of the buildings belong? We can take turns trying the buildings in different spaces and I will tell you whethe what you have done fits the city planner's rule

Children will usually filt in the other single building spaces first. making use of the information which you have given them in placing the first piece. There is no way for them to know in advance what the rule is going to be, of course, so that there is bound to be quite a bit of trial and error. You should make it clear that this is really a guessing game-that the city planner might have made up quite a dir ferent rule for this same pattern of loops. It is also helpful to tell children, when they have placed a building correctly, that the space is completely filled or that there is room for more buildings
for making a one-story building into an apartment house.

Cubes enclosed in a ring

[^1]Yes, that is the only building that can go there Yes, that building belongs there, but it is not the only color that can go in that space Here you have a three-story apartment house is there another space here you could have a three-story apartment house?
Most groups of people, adults as well as children, can complete the "city" when the problem is presented in this form. They may be able to tell which pieces go in each space without being able to state a rule There is no necessity to put a rule into words, though it may be iteresting to see if children want to attempt it. This problem provides complexity" Students are dealing with a great deal of intormation simultaneously, but the representation which grows up in front of hem enables them to keep track of the tests which they have made and to begin to analyze what is involved It would, of course, be possible to start with a simpler problem, but we feel it would be a mistake to do so unless children were having a great deal of difficulty Later it might be helpful to try a two-loop or a three-loop city plan, using rules suggested on Card 2 or ones which the children make up making up their own games, children may want to use all six colors f loops and blocks

One hypothesis which many people seem to explore, in trying to determine the rule, is that it involves what might be called "boundaryatching That is, they become convinced hat a cube can go in a space if part of the boundary is a loop of its color. whether or nol the space is entirely enclosed by a loop of that color. The idea of enclosure is obvious when there is only one loop. When there are several loops people are apt to focus upon the immediate boundaries of each space rather than the large enclosure. They should understand, if the point arises, that boundary-matching or enclosures are equally good rules for bullding a cube city

One of the reasons that these problems provide a challenge may be that they require shifting back and forth from the parts to the
whole. Most people concentrate on filling up one space at a time very tew place all the cubes of a given color in the spaces where they belong and then do the same for another color. A good way to to bunger children check what they have done is to get them to look at the problem another way. If you suggest that they take a helicopter ride around the different sections of che city (movint a of any one of the loops. Many children see quite readily that the red loop contains red cubes and that there are no red cubes outside the red loop, and that his same pattern holds for the other loops as we When they have seen this they will be ready to play the other game suggested moving some of the buildings and detecting what has been changed. and removing the loops and seeing if they can be replaced in the proper position

Children should be encouraged to look at the patterns which they have made and to talk about what they see. They may notice that one city plan results in all the big buildings being at the center of the city, while another has ail the big buildings away from the center
Another way of looking at the city is to consider the differences in the buildings in adjacent spaces How is the building which is one space removed from the center of the city different from the center bulding? When children understand the changes which occe icross cessive spaces away from the center or in toward the center will be
Many variations and combinations of rules are possible Some rules may determine the location of each block precisely while others per mit several pacements Here is a shers per mit several placements. Here is a sampling of other rules
Any building may be placed anywhere in the city except inside the green loop which is the park
Any number of buildings of any color may be placed in areas which are bordered by either two or four colors No buildings may be built in the other spaces

A building may be placed in any area which is bordered by a loop of of its own color.
ny number of buildings of any color may be placed in any area axcept that no building which is the color of the boundary loop on one side of the city is allowed. (One could choose a north, south. east, or west boundary or could decide it in relation to the position of one person at the table.)
Four-story buildings of any color are allowed in the black loop No building may be built outside the black loop

COMMENTARY: COLOR CUBES 3

The pattern created by alternating cubes of four colors is more complex than a simple two-color checkerboard pattern and yet is one-, two-, and even three-cube removals.
There are several ways to play the game You can remove a cube, or cubes, and ask the child what is missing. You can remove several cubes, mix them up, hand them back to the child and ask him to lace them in the pattern. You can remove single cubes from various parts of the pattern or a number of adjacent cubes.
One thing which quickly becomes apparent is that it is possible to emove so many cubes that the sense of pattern is destroyed, and memory task or an impossible one Children may enjoy exploring just how much distortion the pattern can withstand beto it loses is distinctive properties

Setting the pattern up on a turntable and rotating it slowiy as childre attempt to identify missing cubes may actually simplify their task

This is an excellent game for children to play with each other, and in which they can easily set problems for you When children set problems for one another, they often have a tendency to destroy the pattern rather quickiy by making wholesale removals and by moving cubes It may be desirable for you to play this game with them long removals or rearrangements

```
Set up the patten ot cutes as suggested on Card 3
```



```
Remove them oom Tumn mem sound ond put mem bock
```



```
Take oura square oflounglued cubes and tumitaround
    Can your parnere put mem back in plice?
    Can you make up hactee "glue problems?
```


COMMENTARY: COLOR CUBES 4

The "glue rule" problems can be extended to provide a challenge for almost anyone. Children may need considerable practice with relatively simple problems before going on to more complex ones. Gener ally speaking, reversals on the edges of the pattern are easier to detect than those within it it is important that children be given a chance to devise their own strategies for locating the displaced cubes. Some children, even after a good bit of time, may be unable to find out where the trouble is. You might then suggest that they ocus on one quadrant of the pattern, or suggest that they see hether particular rows or columns are in order. It is often surpris gily dirficult to determine exaclly which cubes are involved in a rotation even after the general area has been found.

Fou-cube rotations are especially difficult for many people. It cannot e stressed too much how important it is that children have time to think: often, when several children are playing together, the onlookers make comments such as. "Oh, that's easy. I know what it is," or Come on. Billy, that's a snap." It may be useful to remind these Critcs that many problems seem easier from the sidelines than they arn more valage point ol he player, but perhaps the children will things are not as simple as they appear Having all children close their eyes when the rotation is made is another way of owercomi his problem Children may discover spontaneously that it is possible to rotate cubes not only in the horizontal plane but also vertically-that is, to flip them over. if the student has become used to thinking only of horizontal rotations, a three-cube rotation (corner cube and the two adjacent edge cubes) involving flipping over the "L" can be batfling A still more complicated version of the game involves double rotations. For example, a block of six "glued" cubes might be rotated.
and then four cubes from within the six-cube block might be rotated again, the student's task being to return the cubes to their original position in two moves. (There are at least two ways of doing this.

You will find it helpful to use a reusable sticky material, such as Hold it or another plastic putty, as real glue. This is especially useful for removing and rotating cubes on the inside of the pattern or in groups of four.

Squaric concin n m
one block ot lout rotated

nree blocks missing trom

truee piaces have been -gived
Togethe This patiern car
tog retoroted in one move.

Color Cubes 5

COMMENTARY: COLOR CUBES 5 AND SA

This card, in both content and format, is unique among those in these series so far. It does not attempt to present a problem as such: it is designed, rather, to show students a fascinating property of this pat tern, namely, that it transtorms into other patterns which are related to the original.

Ater the lith transtormation, the pattern comes back to the origina Some students may be interested in speculating about why this is so they might want to follow particular cubes through the entire sequence of transtormations, perhaps labeling them in some wa
One property of all the patterns emerging from this transformation rule is that they retain a symmetry with respect to the main diagonal per to ing. That is, il you folded diagonally a sheet of paper which had a diagram or picture of the cubes at each stage you would tind that red always folded onto red and yellow onto yellow. while green folded onto blue. Why?
There are many other rules which can be invented for making trans. formations

Using ins cew pateern as a satting place apoly exactiy the same as a sating place make a touth patern according to the sare nie then a tin mano a suith
What happens eech mma ?
What happens the tinal time?
why?
Can you invent other tra

Color Cubes 6

Maxe he sparoy six fourtand
and 5
Dince tre pattern in hall domn the miadle
what do you notice?
 orginam patten
What are some ot me things you notice about tinis arrangement

Push the quasters back togethere to make no moie pattor
Can you discover other wars of dinding the pattern?
Make the tour quanters again Stack them on top of one Have You partree look at the tower you ie made and see whether he can higure Out trom lookng all around it. what color cube is under the center one

What cute is

When the tou quanters are stacked. there aro nine stacks of tour cubes Whach Ato the cubes in any ot these in the same orceer How many atherert arrangements of cubes are inere in these nine stacks? You mght want to seoparate the stacks into groups ot stacks which are stine Remove the four tayers carefully and put them on the table
Can you push inem back into the original pattern?

COMMENTARY: COLOR CUBES 6

The activities suggested on this card show the student that there are many ways of looking at the pattern, of breaking it into segments One method of division which is not suggested on the card is to make nine small squares of four cubes each. Students might also want to xplore what happens when the pattern is divided diagonally in rious ways-resulting in al edge.

Students who are quite familiar with the pattern, who have observed closely the four quarters, may find it fairly simple to figure out which cubes lie under the center top one when the segments are stacked. There is another interesting feature of this particular stack, if the four quadrants have been placed on each other without any of them being rotated if you look at the tour corner piles, you will nof them they are identical: perhaps they are in order, red yellow, blue and green. If you now agree to say that these same colors appearing in inverted form, green, blue, yellow, and red, are really the same order then among the nine stacks of cubes there are only two difterent orders of cubes-something which is quite surprising.

Color Cubes 7
$\begin{array}{ll} & \\ n\end{array}$
How many ditroerent painc
How mos?
cubs
creck to be sure inat you have made all possible pas
Can you tind some way of striz
that tyo n neve tound them all?
Can you prodict now many paris you could make using cubes of tive

many pairs covid you make. using tour ditterent colerss Thee How many pariss
ditherent colors?
How many pars covild you make it you had sevenen aillerent colors of How many paris cours
cubes?
Eight colores?

COMMENTARY: COLOR CUBES 7

This is a pairing problem similar in structure to that suggested on This is a ard 17. There are six colors, including black and white. A Block Car can be paired with five others (6×5), but half of the pairs are duplicates.
In constructing these patterns. students probably will find it necessary to set the cubes out in some orderly fashion to keep track of what has been done. Here is one such systematic arrangement:

There are enough cubes in one set to make all the six-color combinations. Students who try to solve this problem with more than six colors will have to work out another system of representation or will cases.

Color Cubes 8
Suppore you heve two cubes of atterent colors - a ted one and a yeltion
There are ino men ot puting hem in ioms the ree one can go tret.

 alue
!
How many atterent wars sere theere of puting thece cubes in a tow
 atiterent colors

Con maxe treese toms a you ve two sets al Cotor Cubes)
any periculust number ot cubes mitout actually uning cuber?

COMMENTARY: COLOR CUBES 8

Card 8 contains a hint which may lead children to work out a way of analyzing the problem of ordering (permutations) with any number of
 inse (3×2) poe possibilties for placing a third cube, there there will be possible orders for three cubes. If four colors are used the six three-cube possibilities for placing the fourth cube in each of e six three-cube arrangements $-4 \times(3 \times 2)$

Children should be encouraged to make all twenty-four possible drderings for four colors of cubes. They will need two sets of Color Cubes to do this. It will be difficult for them to determine whether or not all the orderings have been made unless they proceed systematic. ally. Those who are successful in developing a systematic approach may be able to analyze what they have done. Students who keep rack and make sense of what they have done are frequently excited when they recognize the general principle by which they have been operating

```
Chose cubes of thice atterent colors, to erample, led. blue and
    How many diterent sets or subsets can be tormod using incee ot tower
    Cubes?, Changing the order ot the cubes does not maxe a aitterent
    cubos?
```

One subsel mould be al three cubes together
There are incee subsets of single cubes
Can rou mane there subrests of pars ol cubes?$\square \quad \square$
One subser movid incluse no cubes ar all ।
Counting the subset with no cubses ins it and the set which nas all three cubes

$$
\begin{aligned}
& \text { How man } \\
& \text { cubes? }
\end{aligned}
$$

Chosse tour colors and make these subsels
Does this remina you of anynting you have done Detorese
When you have arrangeced all he subsess ol tour or tewer cubess leave
these on the totie to be used tor the next cord
these on the tabie to be used tor the nert cerid
Can rou caticulate (on nopper how many subsets ol cubes you covid
mate it you used line colors)

COMMENTARY: COLOR CUBES 9 AND 10

Cards 9 and 10 present problems involving combinations similar to the problem given in the city-planning game on Card 2. The difference is that in the city-planning game there were a number of duplications. Card 10 should help students see the relationship between combinations and city planning
Although the problems presented on these cards have dealt with combinations of values of A Blocks and Color Cubes, students may begin to see that the same kind of reasoning applies to sets of all kinds. Combinations can be made using any collection of objects

Mathematical Footnote to Color Cubes

The number of subsets which can be formed from a set with a given number of elements can be expressed as powers of 2 , provided int sets are also counted Students who have been using the loo will be familiar with the following

Supose thas this is anotime citr-planning game. but the buiaings are Iteady constructed Your iob is to pisce them where they beliong
Do you heve enough buildings to toll the spacos?
Are there some buitiongs teft over?

With one loop there are two possibilities. (2')

With two loops there are four possibilities. (2^{2})

With three loops there are eight possibilities

With four loops there are sixteen possibilities. (2^{*})

The six duplicate spaces can be eliminated by pulling the loops to one side

Another way of viewing this is to consider the number of subsets Which can be formed from a set containing a certain number of ele ithere are three elements, for example, there will be one subset that has no elements, and also one subset with three elements There wil be three subsets with one element and three more subsets iwo elements
It one chooses three colors of cubes and forms all possible subsets. these subsets can be placed in the three-ring pattern directly

1 (empty)							
2 red							
3 blue							
4 yellow							
5 red-blue							
6 red-yellow							
7 blue-yellow							
8 red-blue-yellow							
Analyzing the number of possible subsets for a given number of ele. ments can be a challenging but rewarding undertaking. The tabulatio of these possibilities is known as Pascal's Triangle							
Number of elements in set	Number of subsets having thetollowing number of elements Total						
	0	1	2	3	4	5	
0	1						$2^{2}=1$
1	1	1					$2^{\prime}=2$
2	1	2	1				$2^{1}=4$
3	1	3	3	1			$2^{3}=8$
4	1	4	6	4	1		$2^{\prime \prime}=16$
5	1	5	10	10	5	1	$2^{2}=32$

Color Cubes 11

This s. a s game tor two people
Each patyer chooses one color and tates an the whes ot this coler The phar one ot his cubes on any side ot the that cube socond

Ot on any corner but
A must be touching one
4T Must be louching one

The obecet ot the game is to get tour cubes ot the same cotor in a row-

$\stackrel{\circ}{\text { aragonaly }}$

The tras persen to get tour ina iow is me winer

Color Cubes 12

This is a game tor thice four ive or six peoplo
Each person chooses a color and plays in turn
The object ot the game is to get theee pieces in a row
norizontally $\square \square \square$

or
diagonally

4 nis important that each pilaree olace nis cube in turn
Here is an untinished invee in s. -row game

 three other three in-a-iow posstatitios

Color Cubes 14

What cor rou notice acout the aisponess?

Do rou wel hase a Latin savare?
the incic rom
Oo you sal have A Lath square?
What meperenes io the oargonais in oach case
Ty these Lame things mith a tour tor tout Letin sava
Ir these Lame things mith a tour br tour Leein navare

COMMENTARY: COLOR CUBES 11 AND 12

The game of tic-tac-toe, played on a three-by-three board, is an old favorite The characteristic which makes it interesting, and difficult or children at first, is that a successful strategy requires shifting between offense and defense Children tend to play either to win or not to lose and they have trouble trying to do both in the same game Tic-tac-toe gets to be a dull game because neither player can win if no mistakes are made
The four-in-a-row game with Color Cubes needs no board. It is an interesting variation of tic-tac-toe and provides fresh opportunities or analysis. Children are often more likely to discover winning strategies when they play a number of variations of these games

Three-in-a-row with two players is a very dull game and has not been suggested on the problem cards. It might be interesting for children od discover this for themselves

Three-in-a-row with three or more players is an interesting game of strategy. Players will soon realize that they have a choice of which person to block and that it often takes teamwork to keep a player from winning When there are more than two players, it becomes necessary to think several moves ahead and to make the plays which will be favorable in the long run. When players are familiar with the game, it will be more interesting to have a series of games to deter mine a winner, since the order of play strongly influences the outcome

Cnoose tout colors, Take there sis niy ono coun

Tr maxing Latin squares with ine Color Cubes
Siway the color patiens in your Latin squaress
Siud mere atierent kinds ol Latin sauares?
 sause
Can rou maxe four.by-lour Latin squaress which have two colors in each quarator?
Theour colorn?
What oo you nolice about the diagonals

Color Cubes 15

Choose twe colors and takn tive cubes of each color Mare a Lation quare with theses cubes
Oid you do 1 t oy that and error or have you morked outa s smitem?

Use all six colors ano six cutes of each color Mate a Latin squara mith inese cubes
Yyou shit tows and columns will you still have a Latin square? Can you regan your thist arangement to continumg to shit rows and
columns?

Color Cubes 16

Make a Latin square using tour cubes of esch of tour colors Set It arde Now make a dillerent Latin soquare using the same four colors that jou chose tor the tirst Latin sauare
Ist possbie to plase the secend Lath saurat on top ot the trist in such way that no wo pais are repested? A blue may be on top ot tred and a red may be on top ot a blue but therec cannot be more than one ted
on a blue or blue on a reed Only one par can be made with a cute on nother ot the same color
This probiem can be done milh some kinds ot Latin squares but not with athers 12 will hotp you to keep
You are abie to do mis pobiem rau cen use rou soluton to sore tre
 sp the color of the A Blocks and the other to map the shapes (For this Hoblem you will be using all the small A Blocts or all the lage onesi) ame colors ot the A Alocks
h orbet to map shape you will need to set up some kind ot code For

 he painngs

$$
\begin{aligned}
& \text { color Cubes } 17
\end{aligned}
$$

Card 39 . milichets) so that there will be one block of each colto in each
arvo A Aiocest io lumn, and atso one block of each shase in seach row

$$
\begin{aligned}
& \text { tre color a } \\
& \text { This problem can be solved Do not be discouraged it you are unable to do } \\
& \text { Ins prober ine you atempt it } \\
& \begin{array}{l}
11 \text { y } 00 \\
\text { nave } \\
\text { ne }
\end{array} \\
& \text { nno } \\
& \begin{array}{l}
\text { How wre they ditherent } \\
\text { with the } \\
\text { mo } \\
\text { Color Cubes }
\end{array} \\
& \text { you have resched a solution to the A Alocks Latin square probilem, you }
\end{aligned}
$$

ninco a Latin square with the Peopiof Piece:

OMMENTARY: A3, 14, 15, 16, 17 OLOR CUBES PIECES 15, 16

Latin square is an arrangement of elements (numbers, letters, olors, etc.) such that no two elements are repeated in any row or column of the square. Any number of elements may be used so long
atin squares with Color Cubes present a wide range of complexity they can be introduced to younger children by using just four cubes, wo each of two colors. There is only one way to make a two-by-two Latin square, and it will still be a Latin square if rows and columns are shifted

A three-by-three Latin square may not be much more difficult tor young children to make. There is just one basic type a solid color in one diagonal and three colors in the other. Rearranging rows and columns wil change the color of the diagonal but will not destroy the Latin square

The four-by-four Latin square is much more interesting. Since solving he Latin square problem with A Blocks and with People Pieces lenging for students to analyze some of the patterns. There may be chalenging for students to analyze some of the patterns. There are twelve ylder students would be to find ways of a good research problem for the useful attributes are not single qualities, but rather patterns of color or numerical relationships. One way of distinguishing one square from another is to count the number of different colors in each quarter of the square. This is only partly helpful, however, because here are three Latin squares which have two colors in the quarter lour which have inree colors in the quarters, and five which have four隹 lock of four gives additional information and, considered with the umber of colors in the quarters, helps to distinguish the squares omewhat more precisely

Another useful way to tell four-color Latin squares apart is to draw a iagonal line on the pattern where two or more cubes of the same color touch at their corners. Each of the twelve squares has a distincive pattern which is revealed in this way
There are two types of four-by-four squares, as shown on page 62 ive of one type, seven of another. The problem suggested on Color Cubes Card 16 can be solved it the two squares in the first row or any ive squares can be transformed into any other one by rearranging

People Pieces 1

2, 2

4.4

4,4

Can rou coscrito it
Can you predect mhat some of the other pieces mill boot inee?
Tate out another piece ana putit on the lable
Can you now mave a berter preaction soout some ot the cemenning

whemeer rou were ngm
What can rou himat ot to co met ine percess?
Can rou invent some games
rows or columns. For example, in the second row, the first pattern can be transtormed into the second pattern by moving the first column so that it becomes the third column. Students may be interested in making up a notation so that they can tell how to get from one pattern to another one. (One notation for the move suggested could be)
Any one of the second type of square can be transtormed into any other of the seven in a similar fashion, but no amount of rearranging of rows and columns will transform a square of the first type into a square of the second type or vice-versa

4.4

3. 3

2.3

3.2

COMMENTARY: PEOPLE PIECES 1

This card presents a lask similar to that of generating the set of A Blocks, described on Card 1. For younger children the same method Pintroducing pieces that was described in the Commentary for A start by show may be used, except that it is probably a good idea to start by showing the children one of the pieces
In some ways the People Pieces set may be simpler than the A Blocks set While there are four attributes instead of three, there are only two values tor each attribute. The main difficulty with People Pieces seems to be that of terminology The words children tend to use spontaneously to describe the pleces refer to more than one attribute "man." "woman." "boy." and "girl" all refer both to sex and to age. When a child uses the word "big." he may mean fat, he may mean tall. or he may mean both fat and tall

It is important that children have a chance to play with the pieces. 10 invent games, and to sort out the various features of the pieces at their own pace, lacing the problems of terminology only when these become relevant
We have used the following terms tor the attributes and their values.

Attribute	Values
color	red, blue
age	adult, child
sex	male, female
girth (fatness)	tat. thin

girth (fatness) tat, thin
Children may be ready to use a standard vocabulary atter trying some of the activities suggested on Card 2

People Pieces 2
Put out all the Peopie Pieces on the tab en
What ate the attributes ot this sel?
What are the values ot the attributes)

How many piecess are there in a subset that contains pieceses which sere
alise in only one way?
Hox many whem
(2) ene

COMMENTARY: PEOPLE PIECES 2

While children may have trouble with the terminology for the People Pieces, they seldom lack ideas for things to do with them. Many five-year-olds have spontaneously formed the single-attribute subsets sug gested on Card 2. Sometimes they have formed subsets of People Otten they hyve a stor to with what they have done "The eople are all going to eat at this table." "The fathers are taking the boys on a trip." "The boys and girls are playing." Sometimes children group the pieces into families: perhaps the fat red parents have fat red children, or, on another occasion, the fat red parents have thin blue children. (Children often delight in exploring improbable genetic combinations with these pieces!)
After playing with various subsets, children may be able to form others "by eye" before they are able to say in words what the attributes and values are.

People Pieces 3
Choose two attributes You might choose color and age sex and tatnoss pieces having one valus ot esch ot the chosen attroutes it rou choose bor and age, the piecess in each subsel will have the same color and the ame ase
How many subsets are there?
actice mating these iwo-attribute subsels untal you can do it eastiy
Asx your partine to identity the attributes each subser hass in common A1 pour partiner makes two-attribule subsets. can you identity the attributer

How many yitrerent two.athoubute subsets can there be mith the
or

COMMENTARY: PEOPLE PIECES 3

Six two-attribute combinations can be made from the four-attribute People Pieces set. It will be helpful for you to be aware of the possible ombinations as you observe the groupings the students make
color-girth color-sex girth-sex
color-age girth-age age-sex
Students will probably arrive at the conclusion that there are six possible two-attribute pairs by making them. Some may approach the problem more analytically One way of thinking about the task is to recognize that each of the four attributes can be paired with the three other attributes

$$
\begin{array}{llll}
\begin{array}{l}
\begin{array}{l}
\text { color-sex } \\
\text { color-age } \\
\text { color-girth }
\end{array}
\end{array} \underbrace{}_{\text {age-se-gith }} \text { age-color } & \text { sex-girth } & \begin{array}{l}
\text { sex-age } \\
\text { sex-color }
\end{array} \begin{array}{l}
\text { girth-age } \\
\text { girth-color } \\
\text { girth-sex }
\end{array}
\end{array}
$$

There are 4×3, or 12 , possibilities but because half of them are dupications, there are only six different pairings possible.
Younger children will frequently discover two-attribute subsets as they make up stories about the People Pieces. Some children may e ready to talk about their stories, and may be pleased to have you listen in, suggest modifications and extensions, or tell stories of your own It you told a story about the tat children eating lunch together hildren might then readily form the group of fat children in which girth and age are the common attributes. Another story might be. "It hese people (the fat children) are going to ride in one car. who will ide in the other three cars?" It is not necessary, of course, to have cories for all groupings. If you form one set of pieces that have two attributes in common, children will sometimes spontaneously form the other three sets of pieces which share the same two attributes.

COMMENTARY: PEOPLE PIECES 4

Suppose you place a thin red boy with a thin blue boy and say, piece a tat red are going to walk together." If you then take another person?" many children will know say, "Who will walk with this and will form all the other pairs They will ay which piece to choose subsets by dealing with information wive have formed three-attribule taneously, not by saying to themselves. "These pairs must be multsex, age, and girth." "If you or the children have been led by the es gestions on the card to make such a sequential analysis of the attributes shared in each pair, it might be useful to do the problem again, making pairs as rapidly as possible without trying to name the attributes. You may sometimes find that you can do this quickly and easiy by eye, without using words. It is a common experience, however, that sometimes one's simuitaneous awareness" fails, and sequentia analysis is needed to prevent or correct errors. Students working these problems can learn to solve many problems quickiy and easily, but they may also discover that there are times when it is important to analyze what has been done, step-by-step.
It is often not obvious, even to students with considerable skill in handing three attributes simultaneously, that it is useful to focus on the common difference instead of on the attributes which are shared Since the parrs will be alike in three out of the four attributes, there will be one attribute which the pairs will not have in common. If a per and io be easier to say. "They must be alike except tor sex, than to say, They must have the same color, the same age, and the same girth Readiness to consider difterences as well as likenesses is useful in wide range of problem-solving situations.
People Pleces 5

COMMENTARY: PEOPLE PIECES 5

These games are analogous to the ones suggested on Card 29 in the A Blocks series. The ideas are presented rather more directly, since students should be able to recognize their similarity to the ideas in volved in previous loop games.
In using People Pieces with younger children, and perhaps older one too, it may be helpful to spend some time naming the pieces accurately. For children who can read, it might be interesting to place the value cards as follows.

$$
\begin{gathered}
\text { Red } \rightarrow \text { Fat } \rightarrow \text { Male } \underset{~}{\rightarrow} \text { Adult } \\
\times \\
\times \\
\text { Blue } \rightarrow \text { Thin } \rightarrow \text { Female }
\end{gathered}
$$

All sixteen pieces can then be named by reading from left to right. ollowing the various arrows

Ider students may be interested in working out a way of symbolizing the names they have used so that they can keep track of what has een named and what has not. If the values in the top row are represented by 0 's and the values in the bottom row by 1 's, the number 0001 would represent the red fat male child. A similar use of binary notation is suggested in the Note on page 72.

People Pieces 6
The kind ol game suggestec on Card 5 , involving iwo loops. can alio be played mith theee loops

Can rou name the pieces which beelong in each space without actualy putting them there?
Wil one or the spaces contar min, blue soums
What are the names or the other spaces?
Set up the loops and place the pieces as the labels requirg What happenss it you label the of the loops with values of the same atribute (lor example inin and tati)?

Weic is a aiterernt oame Choose three value crads They may all be valuen

 tries to name the carcs by looking at the pieces in the loops
morere challenging version ot the oame can be playyed. y you isber the cooss. then nave your parther test various pipcess to tind out where the Selong his task is to icenentit the itabels mith as tow trials of pieces an possble

COMMENTARY: PEOPLE PIECES 6

This problem is directly analogous to the one presented on Card 31 of the A Blocks series. Sludents should. with a linte practice, be able to name the subsets before placing pieces in the spaces formed by the loops. For the problem suggested, for example, there would be
thin red adults
thin adults that are not red or
thin blue adults
red adults that are not thin or
fat red adults
adults that are not thin or red or
tat blue adults
red people that are not thin or adult or lat red children
thin people that are not red or adult or
thin blue children
eople that are not thin, red, or adult or
at blue children
hin red people that are not adult or
thin red children
Since there are only two values of each attribute in the People Pieces set, each negative statement can be converted into a positive statement. In the A Blocks set this is true only of size, since each of the other attributes has four values. If one of the People Pieces is not red, then it is blue; if it is not an adult, then it is a child, and so on. Stuind it helpful to make some in handing negative information ma

When two loops are labeled by both values of an attribute (adult and child, for example), the intersection will be empty because there are no pleces which are both adult and child.

People Pieces 7

One of the Peopie piecent

```
is/eo
is not.enis
whuch ore is,y?
```


Sppoce you ment to keee taciol the continations of the two

Con you pley yon geme br cookng at the picces oun not toucting
Can you play the oame mity your cyese cliseced
e problem of determining the labels on the cards wich are face own beside the loops is the same as that suggested on Card 35 of θ A Blocks series. Because there are lewer pieces and because they can handle this problem even if they have had difficulty with the nalogous A Blocks problem

COMMENTARY: PEOPLE PIECES

This game is similar to the one suggested on A Blocks Card 18. Those

People Pieces 8

Chnose any one of the People Pioces Put this pirce the hey piece on The table Beiont mato a tow ot al the pieces that oitter trom it in a thic oon of those that atter toem it in thee ways. and a touth ow of those that ditter trom it in tour wars
 How

Correct?

COMMENTARY: PEOPLE PIECES 8

This problem generally requires step-by-step analysis; it is easy to get bogged down attempting to solve it all at once.
The analysis is not difficult. There are four pieces which differ in one way from any key pieces, one difference for each of the four attributes

One Ditterence sex age girth girth

There are six pieces which differ from the key piece in iwo ways. may be helpful for students to recall the pairing which they did in the problems suggested on Card 17 of the A Blocks series or Card 7 of ring four attribut ust as there are six ways of pairing four blocks
Two Differences color-sex
color-girth
color-age
sex-girth
sex-age
irth-age
There are four pieces which differ in three attributes from the key piece One way of thinking about pieces which differ in three ways is to recognize that there wilbe one attribute in which they are not

differe

Three Differences color-sex-girth (same age) color-sex-age (same girth color-girth-age (same sex) sex-girth-age (same color)

There is only one piece which is different from the key piece in all four attributes.

If this problem proves too difficult you can suggest that students tr it with hall the set: all the reds, or all the males, etc

People Pieces 9
Choose any two pieces at innoom and mate a parr out ot them How ase mey atherent?
How are mey alike?
Make other pars so that the picces in each parn are aine in the ume Wis that those in the thes pas are it the pecess in the hast par stice in age and seex The pecees in rourt list pasi mar be alite in no wass, in one ay. in wow wasp or in three wesp Piactice mexing paris untul you can

Fir all he pecees accortang toa nule which you have chosen All the

 under all the others? That is, can he discover the ruve you have used tor maxing para
betmeen ine pecess in each par
It at the pieces are in osars accerang to some vile con you tigure Thit the pitces are in pass sccorang to some rule can you tigure bottom peece in one par thrs1)

OMMENTARY: PEOPLE PIECES 9

Determining the bottom piece in each pair after having seen the bottom piece in one pair requires awareness of the pairing prin When the pairs have three attributes in common, most students will be able to name the bottom pieces quite easily. The
lask may be harder when there are only one or two attributes in common or when there are none.
When students are thoroughly familiar with the concept of systematic pairing, they may be able to discover the rule just from
 is not possible. For example, if all the red pairings for which this the blue pieces might be under any of the red pieces: that is, all you know for certain about the pairing rule is that it involves a difference in color. On the other hand, it seven red pieces and one blue piece were on top, you would be able to determine the rule, because you would know that a red piece must be under the blue one, and you could determine from looking at the seven visible red pieces which one it must be if there were six red pieces on top and two blue ones, you could not fully determine what the rule was, but you could narrow

People Pieces 10

The a

Par the temaning pieces so thar ner share the same inenesser and Herences it your fist pair ditters yust in color, the remaming pariss should oitte in color only)

- meer each part on top of the other

Con your partnet tell what is under each one of the covere peceses betore ho takes any ot them olt?

Were are three problems invoving ust the aduti pieces Assuming thive
 tive the probiem

Tues or al the tar peopile or all he chidicen
Can you preacict which problems can be solved and which cannot?

COMMENTARY: PEOPLE PIECES 10

the first two problems given on Card 10 provide enough information ot that it is possible to tell which piece is under each cover if you know that all the pairs share the same likenesses and differences The first problem has two men and two women, two tat people and two thin people as covers. The key to the solution lies in realizing hat one of the covers is blue while the other three are red Reds must e paired with blues because if reds were paired with reds and blues with blues there would be six reds and four blues, whereas you know hat in the subset of adults there are four reds and four blues. The piece under the blue cover must be red, and the only red piece that is oot visible is the fat red man. Color is therefore the common difference in these pairings.
in the second problem there are three women and one man, three thin eoople and one lat person, and three blue people and one red person One can focus on the piece that is different from the other three in any of these ways the man must be parred with a woman, the tat person with a thin one, the red one with a blue plece, and for each of these pleces there is only one possible choice since the three othe possible choices can be ruled out because they are cover pieces. The pairs must therefore differ in color, sex, and girth
In the tinal problem there are two men and two women, two tat people and two thin people, two red people and two blue people since there is no odd piece, the basis for the pairings cannot be de ermined without removing one of the covers

Diteses mitin any one of the witcers. or matices
ane This tme he showist inc out tuo pecces mhite rour parthe is not looking
 rou mase

new staring pome tor plasne the above gameses again.
Win an waragementer of tour matrices wach can beo plased taring

COMMENTARY: PEOPLE PIECES 12

This card presents a problem which is not conceptually difficuts but which can provide a considerable challenge in scanning to ind differences. It also suggests a game which can result in systematic transtormation of the original matrices into new ones
Games can be invented which involve transposing pieces among gree of complexity, it may be best to allow students greater dethe possibilities of these ber best to allow studenis to discover they are inclined to extend the suir
ach pair of pieces in a stack. An arrangement of this sort can be sliced so that all the pieces sharing a value ore on top, a horizonlogether will separate the blue and red pieces, a different slice tal sile wil septe the adults from the children, or the males from the males. It is not possible, of course, to separate the values of each atribute in a three-dimensional matrix when you are using the full four-attribute set of People Pieces. A subset having three common attributes can be arranged so that it is "completely sliceable. however.

People Pieces 13

Lay out four toops ine mis

Cabe the tist loop with a value of an antitbute Label the second toon mith a vive of anderen attibute One loop might be thin anothee migh be Bive ect
the remaming bops
Now put esch of the Peopile piecess in the approphate loop or loops

COMMENTARY: PEOPLE PIECES 13

This is an extension of the three-loop game with the People Pieces which was suggested on Card 6 . 1 may come as a surpise be placed into the pattern used for the "city-planning" game with the Color Cubes. Even more surprising may be the discovery of which piece does not go into the pattern. Students may, when they have played this game several times, want to try predicting. for a given combination of values of four attributes, which piece will be left out.
Students can be led by this problem to an explicit awareness that each of the values of the People Pieces may be thought of as a nega ion. For example, it one of the loops is labeled Red, some students o in this loop are the Not-Reds, and then suddenly realize that not are the blues.
The pattern of loops suggested here eliminates the six duplicate spaces of the patterns given on Color Cubes Card 1. A different ar angement of loops which eliminates these six duplicate spaces is suggested in the Mathematical Footnote to Color Cubes on page 56.

People Pieces 14

Choose a value. tor erample red

Mase a tine of all the pieces mhich have this ralue and then continue The line with all the piecess which have the e
reas will be cogether, tollowed by all the bluen
Now choose anothee value tor example male Within esch of the colo subsests in your ine the males should come betiot the temales that in the tirst tour pieces in the ine will be red males the nent tour roi temales. elc
Decilo on a third value 11411 is adut, then within the subsets of maler and temales you have alterady maseo the adutts mill come betore the chidren finaly, tr rou choose tatness as the fouth watue, the tat tred a Stating at one end of the ine, stacc al sixteen piecess in order Have
your patrine ty to predict the pieces in ine stacking removing a piece
 How quicky can he preaict correctiy?
Can you make up other rules?
Th to invent a way of writing the fuibes so that your partine can put the pieces in ordere without talking to you about your ruiles
Can you state the rvies in wortss?

COMMENTARY: PEOPLE PIECES 1

The problem of ordering this sixteen-piece set in some systematic way opens up a wide range of complexity. Students may find that they can predict the next piece successfully, even though they cannot state the rule. It is also likely that the person doing the ordering will make some errors and this can be the source of profitable discus

Note:
There are many ways of describing the different orders, and devising ways of analyzing them can be an interesting puzzle. Here is one way of recording the sequence which was suggested on Card 14 piece
number blue old thin male

1	1	1	1	1	The numeral 1 stands for the presence of the eiven
2	1	1	1	0	value: the numeral 0 3
1	1	0	1		
4	1	1	0	0	stands for the presence
5	1	0	1	1	of its opposite.
6	1	0	1	0	
7	1	0	0	1	
8	1	0	0	0	
9	0	1	1	1	
10	0	1	1	0	
11	0	1	0	1	
12	0	1	0	0	
13	0	0	1	1	
14	0	0	1	0	
15	0	0	0	1	
16	0	0	0	0	

Those familiar with binary notation will observe that the order of pieces is given by counting backwards in base two.

People Pieces 16
suogestec on Cara 15 to solve the Peopie Pieces Latin suaste probie

brano sex)	
100-teo , temate)
bueblue lemate	olve-asult. tim

 the other color Cubess latan suaves which cons be placese one on top of
 heip pou tolom the cose mal you set up One cube mat tell yout tor

 teter to ony one ol the Peopief Peces.
please see pages 61 and 62 for commentary

This set of attribute pieces has the same number of attributes and values of each attribute as the People Pieces set Students may enjo making such sets by drawing on the back of the People Pieces set or by drawing the shapes on separate cards. Students will profit from making up attribute sets of their own.

Which of theso ere A's?

A tew cards wnich are prosenteo in the same format as the Creature Cards may bo neiptul in geting children to reccognze that many ot these nex probiems sere ossically the some ones they are oireaocy amitiar with
and be able to solve the problem at a perceptual level, withour being able to say why a particular choice was made The Creature Cards can encourage analysis by showing students that they have to check out their hypotheses step by step if they are to avoid errors.
There seems to be a subtle difference between asking a question in he form. "Can you point to the Gligs?" and. "Is this a Glig?" The irst form of the question is often easier for younger students who can scan for "Gligness" but have trouble in making a separate yes or no decision for each figure.
Children as young as five have done the first few problems Our expectation is that children in the early grades can enjoy the tirst cards it they are presented in a relaxed, casual atmosphere and not in a formal teaching situation

Children may be interested in comparing the real world with that of the "creature" world Some five-year-olds tried naming the Wibbles they knew in the real world dogs, monkeys, horses - anything with a tail A person with measles or Ireckles is a Bleep. and there are many wo-eyed Jexums around in comparing creatures in the card set exums are Gruffles, that all Mellinarks are Sexums, but only some Mellinarks are Snorps, but not all Snorps

There will undoubtedly be some disagreement about the creatures hat children make up for each other, if not about the cards which are supplied It may be useful to discuss with children the necessity of having some instances of things which do not beiong to a class in order to be able to arrive at a definition It one assumes that any he contrany it is clear that Shloms can have stripes, tivisidee to spots. or any other features as long as they have a curved outine onsider the following sequence in which a very broad detintion class is used

C: They're any rectangle T: This is also a Quigly

C: Any four-sided figure is a Quigly. T: This is a Quigly

C. Quiglies have straight lines tor sides Here is another Quigly.

C. All Quiglies seem to enclose a single space

F But this is also a Quigly:

C. They must be enclosed-no openings. T. This is a Quigly too

\bigcap

C. But everything you have drawn on the paper is a Quigly

T Yes, a Quigly is anything drawn on paper

Now that you have had firsthand experience with the materials and problems which make up this unit, you may be interested in consider. ing with us the nature of learning and ways in which children may be helped to develop skill and confidence in their own thinking
A child's habits and styles of thinking and his attitude toward learning are markedly influenced by the conditions under which learning takes place. If speculations about the psychology of learning are to be seful in education, they must take into account a wide range o problems, including the subtle and complex problems of classroom rganization While certain experiences may be more useful than others in helping children develop effective skills of thought, and while it is hoped that the present materials make it possible for many children to have such experiences, it must be pointed out that smply administering a set of exercises to children without taking into account their individual interests and development is unlikely to produce lasting effects. Experiences which result in growth canno e handed to a child, they are something which he must reach out for and the opportunity for reaching may require conditions quite different from those in which mere passive reacting is sufficient to eet expectations

Thinking: Out of School and In

Babies and young children play, and we play with them We do not attempt to teach them in a formal sense, and yet they learn a tremendous amount, largely on their own initiative in an environment of interesting things and responsive people When they are directly Nolved in an activity, the attention span of young children is much er han we normally expect in the classroom, and the intensity of engagement in the lask at hand is often quite astonishing. A play is his work, a senious and compelling work for which uses any materials which may be available the young child has an cings much of the time in to be learning necessary and usefu tasies which parallel or anticipate the real worl
essive intellectual acquisition, yet children anguage is a mout formal instruction. The child does most of the ork for himself. At first he pays attention, probably randomly, to many elements in what elements which seem important because alective attention io sor in which they occur He rehearses what af repestition or of the often in a monologue at bedtime Though he needs to remember io acsive accomplishment, almost all children eaming to tak is traditional practices of formal instruction to do learn. If we co the they might never learn. In view of their greas esech children to taik, mith ther to help children with ther thinking potential tor ieamer with humility, restraint, and respect must be undertaken with humility, restraint, and respect The conditions under which young chilaren learn so much are approximated in some of our nursery schools and kindergartens the best of these there is respect for the dignity of the child his ight to learn and his right to choose what he wishes to work on at particular moment are protectedilty to become deeply involved in capaciry for seil-direction, his abiny to becond to meaningtul inter what he is doing, and and other children, are much greater than is commonly realized

When a child enters first grade at six, the conditions under which he is expected to learn often change radically Untortunately, the patter the primary years is increasingly one of formal instruction with ool the choices about content and approach made by the schoo asd the acher The teacher with the aid of the timetable and the arriculum, assumes responsibity for teaching the child and equaten teaching with learning -a most dangerous and misleading equation

Much of the child's potential for learning is lost as soon as someon else attempts to assume responsibility for that learning the child may or may not be interested in what is taught or in the way it is presented, whereas formerly he was able to teach himself by acting
upon his immediate interests. He may learn to pay attention at leas part of he ime to please the teacher, or to avoid punishment, bu he may lose much of his capacity to become deeply absorbed, and whern incredibly persistent in his own choosing. The child who can be situation where the liy kind peovs play may ind himserl in a which is applied to an assiged lask. 11 he pes berm is a school activity he must make his interest cortor to meshedil of the classroom, puting away the things he is working on and beginning something else many times a day He learns slowly contorm to the schedule and the discipline of the classrom by set. ting aside his own interests and learning the game called "school." The kind of self-discipline and personal involvement which enabled the child to acquire language becomes secondary to the discipline of the schoolroom and to the completion of fragments of assigned work
In addition to limiting scope for initiative and self-direction, formal teaching situations otten place other restrictions on children's learn ing To enable one teacher to instruct a class, subject matter is broken down into little pieces which are presented one at a time By checking to see whether these discrete pleces have been retained, the teacher can gain the satistaction of seeing a measurable result of her
 icutt or children to coordinate separate elements presented to hem singly than it is for them to deal with much greater complexity which they can handie in their own way Children may have diniculy understanding things which are presented in little pieces Drill and epetition can make it appear that they have learned something, bu hen memory lails, their learning disappears payg the game school successfully demands a good memory and an interest easing others The process of repeaing. lesting. repeaing and ng again, helps the teacher and the schoor substaniae the leads hat the method is working Directed teaching of this sort often lead

10 mediocrity in thinking precisely because the systematic avoidance of challenging complexity makes learning more difficult and less

 ewardingAn important idea that has grown out of the investigations that led this unit is that of "manageable complexity" Many of the game and problems suggested in this unit are complex. The materials avail able. however, seem to lead most children to realize that although of dealing with the complexity. The materials are rule-bounded: the of dealing with the complexity. The materials are rule-bounded the
a Blocks set, for example, comprises four shapes, four colors, and A Blocks set, for example, comprises four shapes, four colors, and
two sizes; and once enough pieces are on the table to lead the child to suspect that there are no more shapes, sizes, or colors, he can sually infer what the remaining pieces in the set must be . The citylanning game with Color Cubes is a good example of this kind of anageable complexity. There are a number of things for the to keep in mind as he decides which buildings go in each space, but a visible record of his successtul hypotheses is left by the completed buildings, and thus the complexity is not overwhelming. The natrix games suggested on Cards 19 and 20 of the A Blocks set are urther examples of manageability the attributes shared by rows and umns must be determined in order to solve the problem. bu an th will needed is presen Ma lough not all - five-year-old d these problems challenging, as do many-though not all -adults eature common to most of the games and problems is that memon iot as important as reasoning ability. In many school settings -mory is often crucial, and the child with a good memory may be to succeed with very little real thought or insight. Contronted a new problem or a rearrangement of an old one, however, the who is accustomed to relying on memory may be at a loss. His Illowed have little relationship to one another; and he may have ootion of where he has been or where he is going. This does

not seem to be a necessary pattern for education

Simultaneous and Sequential Thinking

may be useful to distinguish between two kinds of thinking. simu

 taneous and sequential, always remembering, however, that these terms, or any terms that one might use, are really shorthand for extremely complicated modes of thinking which are imperfectly understood.In complex situations we often deal with quantities of information virtually simultaneously, without conscious, analytic thought. We perform complex physical acts such as riding a bicycle, driving a cat being to explain words how these compenents are retated We do the same when we perform complex acts which are not physial For example, we are all able to recognize people we have seen before without having to stop to consider their individual features
Consider this last example. It really is remarkable that we are able to recognize hundreds of people all having two eyes, two ears, a nose, and a mouth Unless an individual has outstand wo teatures, we may find it quite impossible to describe him enough for someone else to recognize him it is not simply the shape of the nose, the expression of the mouth, or the color of the eyes which triggers recognition. It is. rather, our simultaneous awareness of these and many other cues which gives us a virtually instantaneous impression of a unique individual. We seem to be able to handle a deluge of information once, our thinking is so swift that we may be completely unaware of how it is proceeding
Most of the time it is not necessary to analyze the things we do easily and naturally. Analysis becomes important when pertormance falters or when we wish to become consciously aware of the reasons for the conclusions we reach, or to communicate these reasons to others then we must be able to isolate bits of information which we have acted upon and deal with them one at a time, sequentially
an apparently either deal with many ideas at the same time, unre . cively, or we can separate and analyze the components of a flectively, or wealing with them one at a time. We probably cannot think thatith ways at once, since focusing on isolated aspects of a situatio mis to destroy our awareness of the whole. Whar we may do. ever, is to shift attention rapidiy back and fort from the who to its parts, thinking simultaneousty or sequ to help cistres Atrribute Games and Prob extcise

and become confident thought in complex situations
 employ both modes of thought in complex situations

Consider your own experience in taking the A Blocks out of the box one by one. You were probably able to infer the contents of the set before all the pieces were on the table. You were soon able to what was missing without having to consult a list of the pieces When you built with the pieces and later picked up one of them and named its values, you did so within a framework of awareness other pieces and their values. in oiner wids.you wit with ideas one at a time or many at a forth, easily, between the two kinds of thinking

A Bocks and the other materials provide he O id wi an anchor for his thoughts as he shifts from the whole to its parts and back ggin. The materials are bounded by their defining attributes. which have a high degree of contrast Bright colors, distinct shapes. and differences in size emphasize the uniqueness of each of the A Block while also making it possible to group the materials into sers havin properties in common. The contrast makes it possible for children to shift from the identification of an individual plece. such as the small red circle, to formation of a class, such as the red preces. one which involves two attributes. such as the small circles
The real world is not as simple as the A Blocks world because there re more attributes to deal with, many of them not neariy so easy to distinguish from one another To become skilled in dealing with this
kind of complexity and to develop an awareness of the logical rela ions between classes of objects, it may be helpful to have had experience with a model comprising a small number of easily identifiabte tributes
eidea of a model is important to an understanding of the possibilites tor using the attribute materials. The term is used here in the sense of a simplified mental picture of the important aspects of thated problem in the worlid We use models continually in everyday lite, they correspond to our expectations about situations objects and might be thought of as maps for maneuverng in a路 ot circumstances

A Blocks is the one model in this collection. It is supplemented by People Preces, another set of blocks with attributes which are nor so easy to name Color Cubes involve six values of only one attribute. Creature Cards. drawings on paper, introduce a large variety of value children to discover With so many variations, children have many models which may be of use in mastering complex situations

lassitication

lassitication plays a major role in our everyday thinking. otten without our being aware of it. Forming classes and dealing with their lationships is a part of logic. but we can and do use logic without studying its formal rules Indeed, logic is of little practical use uniess becomes one part of the way our minas react when conine lems These attribute materials are not intended to teach rmal logic of classitication They are one resulf of a searchate ways 10 help chidren develop sks. hem to use logical relationships in their danyl der the logical as well categorizing

Atributes are not tangible objects in the same sense that block Are, but rather are the properties of objects which we have chosen isolate and pay attention to. Intellectual development consists. In part. of learning to discover annous (or calegores) clevistio ships among these attributes
lassitication enables us to make sense of a multitude of impressions and to cope with complexity which might otherwise be overwhelming t gives us tremendous mental powers we would not otherwise possess. It is important to recognize that we have considerabie atitude in choosing the attributes we will use in classification. Atributing involves arbitrary decisions to pay attention to certain ath

It you think about the A Blocks, you will realize that there are many "tributes which could be used to categorize them but which have been ignored in the suggested games. Such attributes might includ weight, the material the blocks are made of, surface texture. the sharpness of the corners, and so forth. In their spontaneous play with the pieces, children may pay attention to all these attributes and others which we have not varied systematically. The blocks have been designed so thar size, shape. and color are the attribues easiest , wist ore some tor and some weighed one ounce, some two, some four, and some eight while weight would be extremely relevant.

The choice of particular attributes ior use in analyzing experience restricts the amount of miormation one win deal win, thus making the universe of objects more manageable. Effective thinking requires skillful choosing. The categories we choose are our responsibility and we must be flexible and careful in choosing as well as in using解

Undue emphasis on content or concern about the "methodology" of
ogic is not likely to be useful in helping children to think effectively Children can learn to talk about sets and subsets. unions, interegations without having the skill to handle real-li lass relations in their heads. It may be unfortunate to force children rematurely into sequential, analytic operations. This may prevent hem from exposure to a more challenging complexity than the particular one isolated for analysis and may make it difficult for them to coordinate what they learn in the most useful way

summary

or these reasons, this unit emphasizes the importance of rree play and the necessity of avoiding sustained periods of directed teaching Children should be encouraged to invent their own classitications as well as to use conventional ones The activities suggested in the problem cards represent an attempt to allow children opportunity to evep wir can han a ompetence as they do so. In free play with the blocks, they may dea with a richness of ideas and associations which is not tapped when the focus is on specific classifying attributes in classitying and dealing with the relations between classes, on the other hand, they may become aware of a keenness and precision of mind which can be vital in dissecting a complex experience for a specific purpose

There is considerable evidence that a child's orientation to learning is habits of thought, become established earily in life and are quite ersistent The explorations which children make with attribute materials can provide them with a modet which may be useful for hinking in a wide variety of situations, a model which may help them ecome more sensitive to the world around them, more aware of the own thinking about it, a model which may lead them to an increased confidence in their own intellectual performance

The range of complexity in Attribute Games and Problems makes suitable for children -and beyond. Chilren fust exactly the same way as will course. approach the and problems must be adopted to meet individr and the games arprising, however that some of the skills involved situations. in probid alts may encounter the same stumbling blocks as five age, alds. For this reason, it is not possible to prescribe in advance year-old. Folems can be undertaken by each grade level A number of fiverear-lds may be able to do some problems with as much skill as most ten-year-olds: within any one class the range of ability to cope with complexity will be great At the same time, however younger children may be less able to relate their understanding to other activities in school and in the world outside
Beyond the broad distinction between self-directed, independent use of materials at the junior high school level and their use in class or in small groups under a teacher's direction at earlier ages, no attempt has been made to specity activities for different age levels There may of course, be scope for independent activity on the part of younger children. No hard and fast rules can be laid dow

Games and problems should be introduced to younger children (grades $\mathrm{K}-5$) by the teacher. Although it may be possible to present them to the whole class at once, working with smaller groups is sually most effective. While one set of problem cards for the teacher is sufficient, it is advisable to have extra sets on hand for older children who may be ready to proceed independently and who may enioy the challenge of working from written instructions The Color Cubes, People Pieces, and Creature Cards can also be used by pars of children. Students should have an opportunity to work on the chards individually betore sharing theif ideas with orters

Blocks, they can start with the other materials and later return to the A Blocks problem

The amount of material you order tor a class will depend on how you plan to use it. It is recommended that this work be done individually or in small groups in kindergarten and the early grades, an in his case two sets may be sutficient for a class. If you wish to cherid materias available to more children at the same ime children
A class in which children have a real choice of activies provides the deal setting for Attilute Games and Probers. Heres is possites the introduce the materials in small groups, or even to the entire class and also make them available for the children to use at will At this age children will enjoy playing some of the games that have been
 other. or just exploring the blocks by themselves
In upper grades where the timetable is flexible, the materials can be itroduced and used in much the same way as with younger children. he classroom schedule is less lexibe the materais can be ma arlable to children to use on their own betore classes begin, beween classes. during recess, or whenever the situation permits

Many older children (grades 6-9 and higher) should be able to work rectly from the cards, whether the material is used with a class a whole or as an independent activity by individual children. Many the problems require a partner, and even some that don't may be .
 unit

Students working alone must be free to pursue their own ideas. They should think of the cards as a guide to possible activities, not as a
programmed course in logic. Not all students automatically become involved in this way, taking responsibility for their own learning particularly when they are accustomed to receiving detailed instructions from the teacher. When a student appears to be proceeding to dutifully. following the suggestions on the cards as if they were optional activity and present various problems and games yourselt. much as you would with younger chidren Studets should also be discouraged from racing competitively through the problems.

Some junior high school teachers may wish to use Attribute Games and Problems as a supplement to their courses in mathematics or science, to provide more experience in dealing with sets or classifican devis sills of thin ion h ames int a curriculum to be tollowed in the converional ma
wo kinds of learning are required of you as a teacher in using these materials. First. you must explore your own thinking. The insights you ained as you worked through the problems will help you appreciate what the children are doing.

The second kind of learning will come from observing children's thinking as they deal with challenging problems in their own way om becoming acquainted with the intellectual skills of your students and their potential for growth.
While there are surely ways in which children can be helped to evelop more effective skills of thinking. these require a departure rom conventional ways of teaching and learning. Attribute Garmes and Problems provides no built-in requirements for study at particular grade levels for prescribed periods of time, nor are there specitied goals or rates of advancement. The work should be approached experimentally, in a spirit of adventure, rather than methodically with the expectailon mais sud of performance that can be carefully measured. There must be a
sense of freedom for you and your students You should not feel that is your responsibility to get every child to do every problem Children who are ready can be led on to more challenges. and you in turn should be ready to respond to the challenges individual children set or you and for each other. To insist that all children proceed through he games and problems in he same way and at ine same speed develop tenacity, it he is to take a delight in problem solving he must be free to choose his own problems and his own way of attack ing them. He must be free to change the approach, to leave a problem, to return to it, to dwell on one problem for a long time, to reject another.
Although the cards may be used by older students. working ind pendently, they have been provided primarily as starting points for an a Children have made and some of the things they have enioyed done You yourself must teel free to be guided by the cards or to put them aside as the occasion requires Children are far too variable for anyone to be able to provide detailed prescriptions for the way in which this work should proceed
earning is a complicated process. To help children you must be eady to stand back, observe what they do, and not succumb to the emptation to give that ittle bit ot assistance which could lead a chil prematurely to a solution You must allow time for your own insights and your awareness of children's potential to develop

You, the teacher, hold the key to success in using these maternals You must determine the best approach for your class. you should be ensitive to each student's ability and should help him discover a working level high enough to intrigue him but not so high that it will verwherm him Win expenence you will whe ho mroduce and when to suggest tree play
or tamiliar with Attribute Games should be encourage ather materials. Here are some "attribute marbles of these marbles

am thinking of

ore

Does it have propellers?
"TB it large?"
"Is it large?
"Is it smailr
Doos it have spirals?
"is it opsque?
"Is ti clearr"
is it chowyr" (Some of them have small scratch marks on them)
"Is it mulky"
Doss it have one color? Two colors? Three colors?"
"Is it pale?"
"Is it bubbiy in the flower family?" (One child noticed that the marbles could be clasified by the internal pattern.)
An "Is it dittuse or discrete?" Indeed, the marbles An adult asked, "Is it diffuse or discrete? int

E elementary
S science
S study

Teacher's Guide for

[^0]: Ind mhat color builidings may be put
 inde buibings of one or moro cubes Ament a rute of rules which mil tell what coior builiangs po in the space Many kinds or ruises in certain spaces

[^1]: The same atrangement with two more ings adoed

