Getting Started in Classroom Computing

 byDavid H. Ahl

Digital Equipment Corporation Maynard, Massachusetts

Eldidel

Additional copies of Getting Started in Classroom Computing are available for $\$ 1.50$ from:

Software Distribution Center Digital Equipment Corporation Maynard, MA 01754

Write for discount schedule on quantities over 30.

```
lst Printing -- January, 1974
```

Copyright © 1974 by:
Digital Equipment Corporation Maynard, Massachusetts 01754

Preface

What it's All About

This little booklet is designed to help you take your first steps in learning about computers and how to use them. You don't have to know anything about mathematics, binary number systems, or computer programming to use this booklet. In fact, you don't even need a computer. But, of course, it's much more fun if you have one.

The six examples in this booklet of classroom computer usage are games. Why games? Because they motivate, they increase curiosity, they encourage inquiry, and they make learning fun. For maximum value, follow the suggestions when they say to divide into teams of two or three members. Far more learning takes place during peer interaction than if the games are played individually.

This booklet isn't going to make you an expert in computers or teach you to write a program. On the other hand when you finish, you should feel that the computer is a friendly tool that's willing and able to work for you.

And If You Have a Computer

All the programs in the sample runs are contained in 101 BASIC Computer Games except the two Caves programs; listings follow the discussion in the text.
corví CV aveso
9003 Ts biss
To Ob CtIIE

Contents

The Computer -- An Introduction 1
OBJECTIVES of Computer Education in Secondary Schools 4
EXAMPLES of Using the Computer in Class
SECRET CODES -- Introduction to the waypunched cards and tapes work
GUESS -- Discover an efficient method ofsearching for a mystery number
HURKLE -- An introduction to grids and 13coordinate systems
BAGELS -- An introduction to mathematical 15logic in the form of a game
CAVES -- Learn about networks and tree 17 structures in a maze of caverns
ANIMAL -- Learn to creatively compare 23 similarities and differences of objectsMUST READING AND VIEWING for an Introductory computer29Course

The Computer

One bright morning quite early in his career, the curious creature we know as man awoke with the bothersome feeling that he'd forgotten something.

Since he was at that time rather young (as species go) and hadn't been thinking for very long, the feeling of forgetfulness bothered him deeply. He resolved to do something about it at the earliest opportunity. Hastening from his bed of pine needles and saber-toothed tiger fur, our hero went straight out and invented a memory machine.

By modern standards his efforts did not amount to much. Although his exact actions are lost in the darkness of pre-history, it's a good bet that he did something like scratching a mark on his cave wall or cutting a notch in his favorite war club.

Precisely what he did is unimportant. The important thing is that he made a permanent record which, whenever he confronted it, would serve to recall the thing he wanted to remember. He had stored information, demonstrating a capability which has proved one of the most important traits setting man apart from lower creatures.

THE DRIVE TO REMEMBER

Man no sooner discovered that he could store information than he began finding an ever increasing number of things about which information needed to be stored. At a very early stage, man started to build a spiral of stored information which has continued to grow and shows no signs of slowing down in the predictable future. In other words, the more we know, the more we need to remember.

Memory Machines

There are two basic categories of devices that man uses to store information.

Memory devices of the first category merely provide records of things man wants to remember. For example, the invention of written languages and simple numerical systems made it much easier to record and store information. Further improvement came with the invention of the
printing press; now information could be recorded and stored by the libraryful. Later, with the aid of electronics, information other than written words or numbers could be recorded and stored in the form of sound tapes and recordings. But all these devices did no more than to record and store information.

The second category of storage device is fundamentally different. It not only can store information, but also can alter information in some way and thus provide new information. The abacus used by the ancient Romans was such a device. A Roman could use the abacus to record numbers, or to do sums and even more complicated arithmetic. Thus, the abacus stored information (numbers) and could also alter the information (do arithmetic) to provide new information (new numbers).

The most modern device in this second category is the electronic computer. Information - say, a list of student's scores - can be stored in the computer. The computer can alter that information to provide new, useful information for the user. It can rank the scores and produce an honor roll and a failure list. It can compute the average, mean, and median scores. It can print report cards. Like the abacus, a computer is a device which not only can store information but also can alter it to provide new information.

Advantages of the Computer

What makes computers so useful to man in handling the ever-increasing quantities of information he must remember, analyze, and use?

First, computers are fast. Using today's computers, man can increase his computing power roughly a million times. In other words, a problem which a computer could solve in thirty seconds would take a man thirty million seconds, or nearly a year of working day and night.

Second, computers are accurate. A man working on a problem for a year, even for a normal work year, could be expected to make hundreds of mistakes. A computer solving that same problem in thirty seconds would be unlikely to make a single mistake.

Third, computers are tireless. They can work day and night without fatigue, slowdown or error.

Finally, computers are versatile. Computers are constantly being assigned new roles ranging from monitoring critically ill patients to controlling rocket launchings. We should remember that the millionfold increase in the power to calculate was inconceivable only a few short years ago. Yet the ultimate capabilities of this new power have barely been explored.

The comparison between today's computers and the potential for computerization is about like the comparison between the caveman's first attempts at recording information and the English language as it is used today.

As far as the computer's ability to handle information, we have barely started to use it.

Man Versus Machine

As the use of the computer has expanded, a myth has emerged which attributes human capabilities to computers. This misconception may stem from the application of similar descriptions to people and computers; most common is the use of the word memory to refer to the storage capacity of both the computer and the human mind.

In reality, there are vast differences in the capabilities of man and computer; knowing these, we can put computer power into perspective. Computers have to be told what to do in complete and precise detail. A list of instructions called a program must be prepared and stored in the computer every time it is to solve a problem. This logical sequence of instructions to be followed by the computer must necessarily be developed by man's intellectual processes.

A computer can be programmed to perform any process that can be described in a logical and precise way. The ability of human beings to feel, imagine, create, reason, and use instinct and intuition cannot be duplicated by a computer, even with the cleverest of programmers at work.

Computers are fast and reliable, once instructed by man. But left to themselves, computers are just as inanimate as our caveman's club.

No machine can ever replace man's unique ability to temper fact with reason and intuition, or to think and to feel. The greatest imaginable benefit to be derived from computers is that man will be given more time to ask better questions. Perhaps he will then find time to make better use of the answers. ${ }^{1}$

[^0]
Objectives

The computer, used as a tool of instruction and a subject of instruction, can help convert routine courses into exciting experimental subjects. Some of the objectives of teaching about and with computers in the secondary school are as follows:

To develop student appreciation of the computer's role in society.

To remove the mystery and bewilderment that may exist in the student's mind about computers and automation.

To enrich existing programs through use of the computer. Allow students to work on creative and complex problems that would be impossible. to solve by manual methods.

To motivate students and teachers to more individual, challenging instruction.

To develop the students' abstract reasoning ability and general problem solving skills. To teach him algorithmic thinking and explore rigorous thought processes.

To encourage students to apply computer concepts creatively to a variety of application areas.

To better prepare college-bound students with an understanding of the computer and how it can and cannot be used to solve problems.

To provide students with vocational training in computer technology.

Secret Codes

This game provides an introduction to the way that punched cards and punched paper tapes work.

Printed below is a code which relates numbers, letters, and several punctuation marks to binary numbers of 6 places. The first place on the left corresponds to a bar over the number (in base 10) and indicates that an alphabetic or punctuation character is being represented instead of a number.

CHAR.	CODE		NARY	CHAR.	CODE	BINARY
0	0		00000	L	$\overline{12}$	101100
1	1	0	00001	M	$\overline{13}$	101101
2	2	0	00010	N	14	101110
3	3	0	00011	0	$\overline{15}$	101111
4	4	0	00100	P	$\overline{16}$	110000
5	5	0	00101	Q	$\overline{17}$	110001
6	6	0	00110	R	18	110010
7	7	0	00111	S	$\overline{19}$	110011
8	8	0	01000	T	20	110100
9	9	0	01001	U	21	110101
A	1	1	00001	V	22	110110
B	$\overline{2}$	1	00010	W	23	110111
C	$\overline{3}$	1	00011	X	24	111000
D	$\overline{4}$	1	00100	Y	25	111001
E	$\overline{5}$	1	00101	Z	$\overline{26}$	111010
F	$\overline{6}$	1	00110	,	27	111011
G	$\overline{7}$	1	00111	-	28	111100
H	$\overline{8}$	1	01000	-	29	111101
I	$\overline{9}$	1	01001	"	30	111110
J	10	1	01010	?	$\overline{31}$	111111
K	11	1	01011	space	$\overline{0}$	100000

EXERCISE 1

Think up a message with 12 or fewer characters. Write it in the "card" reproduced below. Then, using the binary code from the table above, mark your message on the card.

Message												
Bar												
16												
8												
4												
2												
1												

The card below contains the message "I love you".

Message	I		L	0	V	E		Y	0	U	\cdot
Bar	1	1	1	1	1	1	1	1	1	1	1
16					1			1		1	1
8	1	1	1				1	1		1	
4			1	1	1	1			1	1	1
2				1	1				1		
1	1		1		1		1	1	1		

For this exercise, get long strips (about $3^{\prime \prime}$ wide, 24 " long) of brown wrapping paper, tag board, cut up file folders, or adding machine tape. Trim the ends of the "tapes" so they look like the arrows on regular computer paper tapes. These arrows indicate the direction of the tape as it goes through a "reader." Each student should have one or two tapes and a cardboard template like this one.

000000

- Secret Code Template

Each student should think of some message and, using the templates, transcribe the binary code for this message onto the tape. Use open circles for a zero and filled in circles for a l. Before transcribing your own message, decode the message on the tape reproduced below. It starts out, "I LIKE ..."

This is not the same code used on actual computer tapes, but it is very similar. If you want to see the actual codes used on computer tapes, get a computer manual or handbook like Introduction To Programming.

GUESS

GUESS is a simple introduction to the idea of a computer program. It can be used with children as young as 8 years old. Program GUESS chooses a random number between 1 and 100. The player tries to guess the number and the computer furnishes clues of "TOO HIGH" or "TOO LOW." It should never take more than 7 guesses to find the mystery number. Do you know why?

In this exercise, six different class members will play the part of the computer. Each person will execute one of the following BASIC statements. The memory of the computer is passed from one statement to another in turn. The blackboard is the computer terminal, i.e., the thing we use to talk to the computer.

Here are the statements:

```
10 PRTNT "I"M THINKING DF A NHMEER. TR'T TG GIESS IT."
20N=INT4日G * FND + 1)
3Q INFUT "TOUR LUESS"; E
4日 IF G`N THEN PRINT "TOU HIGH. TE'T FIGAIN," & GO TG 20
5 0 ~ I F ~ G S N ~ T H E N ~ F R I N T ~ " T O D ~ L D N . ~ T F ' t ~ F G H I N , " ~ \& ~ G O T G ~ S Q ~
60 PRINT "TOU GOT IT! LET'S FLAT FGAIN." & GO TO 1G
```

And here is the "memory":

N	G

10 Write on the blackboard, "I'm thinking of a number. Try to guess it." Pass the memory to 20

20 Pick any number between 1 and 100. In the memory, cross out any previous number under N, and then write your number under N. Pass the memory to 30 .

30 Write on the blackboard, "Your guess?" Accept a guess G from a member of the class and write it on the blackboard. In the memory, cross out any previous number under G and then write the new guess under G. Pass the memory to 40 .

40 If G is greater than N, write on the blackboard, "Too high. Try again." Pass the memory to 30 . If G is not greater than N, pass the memory to 50 .

50 If G is less than N, write on the blackboard, "Too low. Try again." Pass the memory to 30 . If G is not less than N, pass the memory to 60 .

60 Write on the blackboard, "You got it! Let's play again." Pass the memory to 10.

Memory

$\underline{\mathrm{N}}$	$\underline{\mathrm{G}}$

Here is a sample what the blackboard should look like after a "run" of GUESS:

I'M THINKING OF A NUMBER. TRY TO GUESS IT. Your guess?

62
TOO HIGH. TRY AGAIN.
YOUR GUESS?
38
TOO LOW. TRY AGAIN.
YOUR GUESS?
55
TOO HIGH. TRY AGAIN.
Your guess?
45
TOO HIGH. TRY AGAIN.
Your guess?
41
you got π ! let's play again.

HURKLE

Now we jump to another galaxy where we're going to hunt Hurkles. Hurkles? A Hurkle is a happy beast that lives on the planet Lirht that has three moons. Hurkles are favorite pets of the Gwik, the dominant race of Lirht and if you really want to know more, get the book A Way Home by Theodore Sturgeon.

Happy Hurkles radiate. Scared Hurkles go invisible. Most of the time they're scared but they want to be found so they'll give you clues where they're hiding. They live on the intersections of a town with dimensions of 10 x 10 .

You try to guess where the Hurkle is hiding. Remember, horizontal location (coordinate) first, then vertical. After each guess, you get clues of direction. For example:

Guess
5, 5
2, 7
3, 9
3, 8

Clue
Go Northwest
Go Northeast
Go South
You found him!!

EXERCISE 1

Play Hurkle in class. Have a student (or team of 2 or 3 students) decide where the Hurkle is hiding and have other class members guess the location. Mark these guesses on a 10 x 10 grid on the blackboard. The student who hid the Hurkle gives clues to the class.

EXERCISE 2

Divide the class into teams and have them play Hurkle on the computer. Teams should attempt to come up with an optimal guessing strategy. A good strategy should always locate the Hurkle in 5 or fewer guesses. The optimal strategy guarantees finding him in no more than 4 guesses.

BAGELS

In the game of BAGELS the object is to use logic to guess a mystery 3-digit number. All three digits are different. After each guess, you are given clues as follows:

PICO - One digit correct but in the wrong place. FERMI - One digit correct and in the right place. BAGELS - No digits correct.

Let's say the mystery number is 685. Let's look at a possible sequence of guesses to get the number.

Guess \#	Guess	Clue	Discussion
1	123	BAGELS	No digits correct
2	456	PICO PICO	Two digits correct but in in the wrong place. We could assume the 4 and 5 are correct but interchanged and try a new digit for the 6 .
3	547	PICO	Oh, oh. We lost a correct digit, but we now know that either the 4 or 5 must go in the last position and we have to bring back the 6 .
4	684	FERMI FERMI	Wow! We're getting close. Let's assume the 6 and 4 are both in the correct position, but the 8 is incorrect.
5	694	FERMI	Oh, oh. Since we already know the 6 must be correct from Guess \#3, it looks like we've been wrong about the 4 all along. That means (from Guess \#4) the 6 and 8 are correct and the other digit must be 5 (from Guess \#2).
6	685	YOU GOT IT!	We got it in 6 guesses.

EXERCISE 1

Play BAGELS in class．Have a student（or team of 2 or 3 students）think of a number and write the clues on the black－ board as other students try to guess it．

EXERCISE 2

Divide the class into teams of four members．Have each team come up with a strategy for playing BAGELS．Have them try their strategy by playing the game on the computer 10 times．What is the average number of guesses for each strategy？Did any groups come up with the same strategy？
I FIM THINKING GF F THFEE－DIGIT NUMEEF：．TF：＇T TO GLIESS MY NUMEEF FIND I WILL GIVE YOUU CLUES FIS FOLLOWS

0		N	aIfit	CGEEECT	Eill	N	THE	WF：CING	Fositin
FEFMI		CINE	DIGIT	C：IFEFEC：T	FiNC	IN	THE	F．I İHT	F＇ISITIIN
EFGILES		NOI	IGITS	C：					

0．K．I HFYE F NUMEEF IN MINC．
GUESS \＃ 1 ？ 12 ？
FICO FEFMI
GUESS \＃2 ？421
YOU GOT IT！！！
PLFY FGFIN \＆ 1 FGF：YES，a FGF：NG）？ 1
0．K．I HFVE F NUMEEF：IN MIMCI．
GUESS \＃ 1 ？ 12 亿
FICO
GUESS \＃2 ？ 415
EAGGLES
GUESS \＃ヨ ？2G？
FICO
GUESS \＃ 4 ？892
FICO
GUESS \＃ 5 ？ 698
FEKMI FERMI
GUESS \＃ 6 ？ 6.3
FERMI
GUESS \＃ 7 ？ 738
YOU GOT IT！！！
FLFY FGFIN \＆ 1 FGF YEG， 1 FGF：NO？ 1
O．K．I HFVE F NUMEEF：IN MIND．
GUESS \＃ 1 ？ 123
FIC：
GUESS \＃2 ？ 415
FEFMI
GUESS \＃ 3 ？E．17
FIC：
GUESS \＃ 4 ？ 4 玉
YOU GOT IT！！！

FLGY FGFIN © 1 FGK YES， 6 FIF NO）？区

CAVES

CAVES is a game which lets you explore tree structures and networks represented as caves. Various programs in the CAVES family let you explore caves of various complexity in either a tree or circular structure, and let you make caves for someone else to explore.

Here is a run of CAVESl which lets you explore caves in a tree structure.

```
    IMFGINE YOURSELF FIN EXFLOREEF OF THE FFIMOUS
DUZZLEDOFF CRVES. GOU'YE EEEN UNDEFTGFOUND
FOR DAYS, TRIFFING THFOUGH THE CFIVEFNS; FING
TUNNELS. UNFGRTUNFIELY, YOU'FEE LIGST, FING
YOUR FGOD HAS FUN CIUT.
    THERE IS OINLY GNE FFITH GIUT, SEE IF YGUU
CAN FIND IT.
    WHEN I TYF'E F /%', YGUU GIVE ME THE NUMEEEF
OF THE CFVERN YOUU WFNT TG fiG TO. LIKE THIS
WHERE NEXT? ?
FDVICE: MAKE F MAF FS YOUU GOI - IN THE HAFCDEF C:FWES:
        YOU SOMETIMES HFVE TO GGO EFLGK FING TF'Y FINOTHEF:
        WFY' GGIID LUCK!
YOU'RE IN C:RYERN # 1
# 2 # 3 # 4 FFEE WHEREE YOUL EFM GGO
WHERE NEXT? }
DEHDEND
WHERE NEXT? 3
YOU'RE IN C:RUEFIN # 3
# 3 # 9 # 10 # 1 GRE WHEREE YGUl L:FIN GO
WHERE NEXT? 9
YOU'RE IN CFYEFNN # g
# 11 # 12 # 13 # 3 FFEE WHERE YGOU I:FN GOI
WHERE NEXT? 12
DEHDEND
WHERE NEXT? 1S
DEADEND
WHEFE NEXT? }1
DEADEND
WHERE NEXT? S
YOU'RE IN CFWEFN # S
# 3 # 9 # 10 # 1 FRE WHERE YOHI IGN GII
HHERE NEXT? 10
YOJFRE IN EFWEFN # 10
# 14 # 15 # 1E # S FFEE WHEFE YOUL IFNN GIG
WHEFE NEXTT 15
```

YOU'RE IN CRYEFN \# 15
 WHERE NEXT? 21

```
YOU'RE IN C:RYEFN # 21
# 23 # 24 # 25 # 15 FREE WHEFE YOU| EFN [GO
WHERE NEKT?. 24
DEADEND
HHERE NEXT? 2S
DEADEND
WHERE NEXT? 25
```

!!! SUHLIGHT !!!
!!! FREES FIIE !!!
F:EFGRTERS

WELL, FT LEAST YOU FEE OUT

EXERCISE 1

Divide the class into groups of 3 players. Have each group make up a cave network with 28 caves. Here are the rules for making up a network:

1. Cave 1 is at the top; Cave 1 leads to Caves 2,3 , and 4.
2. Each Cave after Cave 2 may:
a. be a deadend
b. lead to 3 more Caves
c. lead out to sunshine and fresh air

Select one team to act as the computer. Starting at Cave 1 , the other class members try to find their way out of the network created by this team. It helps if someone draws the network on the blackboard as the guessing progresses.

EXERCISE 2

Play CAVESl on the computer either individually or in teams. This game allows you to find your way out of Cave networks of three levels of complexity.

EXERCISE 3

Play CAVES 2 on the computer either individually or in teams. This game allows you to create networks of caves for other people to use.

NOTE: In comparison to the preceding games in this booklet (GUESS, HURKLE, and BAGELS) which have optimal strategies for playing, CAVES does not have an optimal playing strategy. However, the type of networks formed in CAVES is very useful in making decision networks or hierarchical structures as we'll see in ANIMAL.

ANIMAL

When a young child looks at an ABC primer there isn't much to distinguish a dog from a horse. Then one day he learns (sees, is told, etc.) that a horse is BIGGER than a dog. Wow! Now there is a way to tell the two apart.

This is an example of the all important process of identification by comparison. Comparison involves finding a common descriptive facet about the things to be compared and then determining whether the objects are similar or different on that facet. For example, let's compare our horse (a pinto) with a dog (pointer).

	Horse	Dog		
Size	Large	Small	Different	
Marking	Spots	Spots	Same	Spors
Color spots	Brown	Black	Different	
Tail	Long	Long	Same	Ears
Eared by man	Pointed	Drooping	Different	
Useding	Hunting	Same		

So we see on the six dimensions we've looked at, the horse and dog are similar on three and different on three. As we grow older, we continue to refine this process until we can distinguish between very similar things (cocker spaniel and springer spaniel, for example).

One way to learn more about this process of comparison to identify things and also to sharpen your own descriptive skills is to teach someone else to identify similar things by comparison. The computer program ANIMAL is just such a willing "someone" waiting to be taught.

In playing ANIMAL, the idea is to teach the computer to identify various animals by asking questions that can be answered with a YES or NO. When you first start with the computer, you'll find it knows very little. It asks you to think of an animal. Let's say you think of an elephant. The computer will ask:

DOES IT FLY? NO (your reply)
IS IT A FISH? NO
So you see the computer knows only a BIRD (no specific kinds) and a FISH (again, no varieties). After you respond NO to the question, "Is it a fish?" the computer says:

THE ANIMAL YOU WERE THINKING OF WAS A? ELEPHANT

And now we come to the crux of the comparison process as the computer says:

PLEASE TYPE IN A QUESTION THAT WOULD DISTINGUISH
AN ELEPHANT FROM A FISH

? DOES IT HAVE A TRUNK

FOR AN ELEPHANT THE ANSWER WOULD BE? YES
The next time through the program, if you said your animal was not a fish, the computer would ask, "Does it have a trunk?" Gradually through this process the computer builds up its repertoire of animals.

Notice that where the computer asked for a question to distinguish an elephant from a fish, we could have said:

? DOES IT HAVE FINS

FOR AN ELEPHANT THE ANSWER WOULD BE? NO
In other words, animals can be distinguished with either YES or NO questions.

For each of the following pairs of animals, write two questions that will distinguish between them. Write one question so that it can be answered "yes" for the first animal in the pair; the other, "no".

DOG
HORSE
ELEPHANT HIPPOPOTAMUS

TIGER
MOOSE RAM

OCELOT CHEETAH

EXERCISE 2

There are many possible ways to distinguish between two things. For each of the following pairs of animals, write seven questions that will distinguish between them.

OSTRICH
GIRAFFE

PENGUIN
GORILLA

EXERCISE 3

Choose one or two "families" of animals. Go to an enclyclopedia, wildife book, or other source and find all the members of the family and their distinguishing characteristics. To start you off, here are the names of some of the members of the cat family:

LION	OCELOT
TIGER	CHEETAH
PUMA	PANTHER
LEOPARD	JAGUAR
OUNCE	CAT, SIAMESE
COUGAR	CAT, PERSIAN

Put these animals in a network like the one on the next page.

EXERCISE 4

Play ANIMAL on the computer. Teach it your family of animals from Exercise 2. If members of the class have chosen different families of animals, when you are finished, the computer should be able to identify just about any animal. If you want it to remember the animals you have taught it, answer "SAVE" to the question:

ARE YOU THINKING OF AN ANIMAL?
Also, for a list of all the animals "known" by the computer, to the above question, just answer "LIST".

PLAY'GUESS THE FNIMFL' WITH RETS
THINK OF GN FNIMAL FND THE C:OMFUITER WILL TR'Y TO GILESS IT...

```
ARE YOU THINKING GF FN FINIMAL? YES
DOES IT SWIM? NO
DOES IT HFVE F TRUUNK? NO
DOES IT GO 'ARFF'NO
DOES IT HAVE RETF'HCTIELE CLFWS? Y'ES
DOES IT LIVE IN THE JUNGLE? YES
IS IT THE KING OF THE JUNGLE? NO
IS IT A TIGER? NO
THE RNIMFL YOIU WERE THINKING OF WFS A ? FFINTHEF:
FLEASE TYFE IN F DUESTIGN THAT WOULC CISTINGUISH F FRINTHER FEGMM F TIGER
? DOES IT HAVE STRIFES
FOR A FANTHER THE FNSWEF WOULI EE? NO
RRE YOU THINKING OF FNN FNIMFL? YES
DOES IT SWIM? NG
DOES IT HAVE FI TRUNK? NO
DOES IT GGO FIRF? NO
DOES IT HAVE FEETRFC:TIELE CLFWS:? NO
DOES IT GIVE MILK AND GO,MOGO?NO
DOES IT GIVE MILK FND EFT TIN C:ANS FINC FILMOST FINYTHING ELSE:? NO
DOES IT HAVE F WOGLY COAT FIND SFY' EEFFT? NO
DOES IT HFVE LARGE FINTLERS? NO
IS IT F EIROD? NO
THE FNIMAL YOUU WEFE THINKING OF WAS AI ? FEMMICIILLG
PLEASE TYFE IN F DUESTION THAT WOULC DISTINGUISH F FIMMFIILLOI FROM A EIRO
? ISITS BODY AND HEAD ENCASED IN AN ARMOR OF SMFILL EONG FLATES
FOR A FRMAOILLO THE FANSWER' WOULD EE? YES
AREE YOU THINKING OF FIN FNIMFL? Y'ES
DOES IT SWIM? YES
DOES IT HAVE FLIFFERS? NO
IS IT THE LARGEST KNOWN MAMMAL? NO
IS IT A FISH? NO
THE ANIMFL YGUL WERE THINKING GIF WAS A ? TUR:TLE
FLEASE TYFE IN FIGUESTION THAT WOULC DISTINGUISH FI TUR'TLE FROM A FISH
? DOES IT HAVE F EONY SHELL WHICH ENC:LISES IR\F'\TS EOOU'
FOR A TURTLE THE FINSWEF WOULC EE? YES
ARE YOU THINKING OF FN FNIMFL? YES
DOES IT SWIM? NO
DOES IT HFVE F TRUUNK? NO
DOES IT GGO RRE? NO
DOES IT HAVE RETRACTIELE CLAWS? YES
DOES IT LIVE IN THE JUNGLE? NO
IS IT A CFIT? NO
THE ANIMAL YOU WERE THINKINGS OF WAS A ? FERSIINN CAT
FLEASE TYFE IN F QUESTION THFTT WOLLD DISTINGUISH F FERSIIFN CAT FROM A CRT
? IS IT STOCKY, LONG-HFIIEED, FIND FOLUND-HEFIDED
FOR A FERSIAN C:HT THE FNSSWEF: WOULCO EE? Y'ES
FRE YOU THINKING OF FIN FNIMAL? SFVE
FRE YOU THINKING OF GN FNIMAL? LIST
FNIMFLS I FILREFICY' KNOW FREE:
SEFL ELEFHFNT DIGG COMN EIOAT
WHALE SHEEF LION
FFNTHER EIE:D FIF:MACIILL
CAT FEERSIAN CAT
ARE YOU THINKING OF FIN FINIMFL? NO
```

O. K. SEE YOU LATER. HOFE YOU HFIO FUN FLLFITING!!

Must Reading

1. What is a Computer? by Marion J. Ball (\$4.40)

A colorful, profusely illustrated, easy-to-read book about the computer, its history, basic workings, and software. Available from:

Houghton Mifflin Co. 110 Tremont Street Boston, MA 02107
2. Populution, A Self-Teaching BASIC Primer by Robert Albrecht ($\$ 2.00$) A step by step self-teaching book using examples and problems from population growth and mobility.
3. 101 BASIC Computer Games by David Ahl (\$5.00) A comprehensive collection of games, puzzles, recreations and other programs for getting people using the computer quickly and easily.
4. Understanding Mathematics and Logic Using BASIC Computer Games by David Ahl (\$1.50)
A combined teachers guide and student workbook for teaching fundamental math and logic principles with computer games.
5. Problems for Computer Mathematics by Ronald Allison (\$1.25) An interesting, descriptive set of problems for in or outside of class for a beginning computer course.

Books 2, 3, 4, and 5 are available from:
Software Distribution Center Digital Equipment Corporation Maynard, Massachusetts 01754

Add 50\% postage and handling to all orders. Payment must be enclosed on orders under $\$ 25$.

Must Viewing

My Computer Understands Me produced by Project SOLO, University of Pittsburgh. 20 minutes, color, sound, 16 mm .

Available from:
Film Library
Digital Equipment Corporation
Maynard, MA 01754

MAIN OFFICE AND PLANT
Maynard. Massachusetts. U.S.A. 01754 - Teleophone: From Metropolitan Boston: 646 -8600 - Elsewhere: (617)-897-51I

DOMESTIC

MID-ATLANTIC (cont.)	
NEW YORK	
Long Island	
Telephone: (516)-694-4131. (212)-895-8095 ${ }^{\text {Dataphone: }}$: $516-293-5693$	
MANHATTAN	
8107 th Ave.	
New York, N.Y. 10019 Telephone: (212)-582-1300	
PENNSYLVANIA	
Philadelphia	
1740 Walton Road, Blue Bell, Pennsylvania 19422	
Telephone: (215)-825-4200	
TENNESSEE	
6311 Kingston Pike, Suite 21 EKnoxville Tennessee37919	
Kelephone: (615 -5888-6571 ${ }^{\text {Kin }}$ Dataphone: $615-584.0571$	
WASHINGTON D.C.	
Executive Building	
6811 Kenilworth Ave. Riverdale, Ma	
Datap	aphone: 301-779-1600 Ex. 53
CENTRAL	
REGIONAL OFFICE:	
1850 Frontage Road. Northbrook, Illinois 60062	
Telephone: (312)-498-2500 Dataphone: $312-488-2500$	
Ind:ANA	
Indianapolis	
21 Beachway Drive. Suite G	
Telephone: (317)-243-8341 Dataphone: 317-247-1212	
ILlinois	
1850 Frontage Road 0 S ${ }^{\text {a }}$	
Northbrook, Illinois 60062 D	Dataphone: 312-498
LOUISIANA	
3100 Ridgelake Drive. Suite 108	
Telephone: (504)-837.0257	Dataphone: 504.833-2800
MICHIGAN	
230 Huron View Boulevard. Ann Arbor, Michigan 48103	

CENTRAL (cont.)	
DETROIT	
${ }_{23777}^{\text {DETROMT }}$ Grenfield Road	
Suite 189	
Southfield, Michigan 48075	Dataphone: 313-557-3063
MINNESOTA	
Minneapolis	
8030 Cedar Ave. South. Minn	eapolis. Minnesota 55420
Telephone: (612)-854-6562-3.4-5 Dataphone: 612 -854-1410	
MISSOURIKansas City	
12401 East 43 rd Street. Independence. Missouri 64055	
Telephone: (816)-252-2300 Dataphone: 816-461-3100	
Telephone: (314)-878-4310	Dataphone: 816-461-3100
Cleveland	
2500 Euclid Avenue. Euclid, Ohio 44117Telephone: (216)-946-8484Dataphone: $216-946-8477$	
DAYTON 3101 Kettering Boulevard	
Telephone: (513)-294-3323	Dataphone: 513-298-472
OKLAHOMA	
${ }_{3140} \mathrm{~S}$ S. Winston	
Telephone: (918)-749-4476	Dataphone: 918-749-2714
PENNSYLVANIA	
Pittsburgh	
TEXAS	
Plaza North, Suite 513	
2880 LBJ Freeway. Dallas, Texas 75234	
houston	
Monterey Park, Houston. Texas 77036 , 713 -77-1071	
WISCONSIN	
Milwaukee	
8531 West Capitol Drive. Milwaukee. Wisconsin 53222	
Telephone: (414)-463-9110	

WEST
REGIONAL OFFICE:
3EG Soquel Way. Sunyvale. California 94086
Telephone: (408)-735-9200 \quad Dataphone: $408-735-1820$
ARRZONA
Phoenix Phoenix
4358 East Broadway Road, Phoenix, Arizona 85040
Telephone: (602) $268-3488$ Dataphone: $602-268-7371$ CALIFORNIA
2anta Ana Anne Street. Santa Ana. California 92704
Telephone: $(714)-979-2460$ Dataphone: $714-979-7850$ SAN DIEGO
6154 Mission Gorge Rood
Suite 110. San Diego. Californ
Suite 110. San Diego. California
Telephone: $(714)-280-7880 / 7970$ Dataphone: $714-280-7825$

OAKLAND
7aso Edgewater Drive. Oakland. Califfornia 94621
Telephone: (415)-635- $54533 / 7830$ Dataphone: $415-562-2160$
WEST LOS ANGELES
$\begin{array}{ll}1510 \text { Cotner Avenue. Los Angeles. California } \\ \text { Telephone: } \\ \text { (213)-479-3791/4318 } & \text { Dataphone: } \\ \text { Di3-478-5626 }\end{array}$ COLORADO
7901 E. Bellevue Avenue
Suute 5. Englewood. Colorado 80110
Telephone: (303)-770-6150 Dataphone: $303-770-6628$ NEW MEXICO
Albuquerque
10200 Menal N.E. Albuquerque. New Mexicoo 87112
Telephone: (5055 -296-5411/5428
Dataphone: $505-294-2330$ oregon
OREGON
Portland
Suite 168
Suite 168 . Westgate Drive. Portland, Oregon 97221
si39 S.W.
Telephone: (503)-297.3761/3765
局hone: (503)-297-3761/3765
Salt Lake City
431 South 3rd East. Salt Lake City. Utah 84111
431 South 3rd East, Solt Lake City. Utah 84111
Telephone: (801)-328-9839
Dataphone: $: 801-364-9956$ WASHINGTON

Bellevue. Washington 98005
Telephone: $(206)-545-4058 / 455-5404$ Dataphone: $206-747-3754$

INTERNATIONAL

NETHERLANDS	CANADA
Digital Equipment N.V.	Digital Equipment of Canada, Lid.
THE HAGUE	CANADIAN HEADQUARTERS
Sir Winston Churchillian 370	P.O. Box 11500
Riiswijk/The Hague. Netherlands	Ottawa, Ontario. Canada
Telephone: 949220 Telex: 32533	K2H 8K8
BELGIUM	Telephone: (613)-592-5111 TWX: 610-562-873 TORONTO
Digital Equipment N.V./S.A.	2550 Goldenridge Road, Mississauga, Ontario
BRUSSELS	Telephone: (416)-270-9400 TWX: 610-492-7118
108 Rue D'Arlon	MONTREAL
1040 Brussels. Belgium	9675 Cote de Liesse Road
Telephone: 02-139256 Telex: 25297	Dorval, Quebec, Canada 760
SWEDEN	Telephone: (514)-636-9393 TWX: 610-422-4124 CALGARY/Edmonton
Digital Equipment AB	Suite 140, 6940 Fisher Road S.E.
STOCKHOLM	Calgary. Alberta. Canada
Englundavagen 7. 17141 Solna. Sweden	Telephone: (403)-435-4881 TWX: 403-255-7408
Telephone: 981390 Telex: 17050	VANCOUVER
Cable: Digital Stockholm	2210 West 12th Avenue
NORWAY	Vancouver 9, British Columbia, Canada
Digital Equipment Corp. A/S	
OSLO	
Trondheimsveien 47	GENERAL INTERNATIONAL SALES
Oslo 5. Norway Telephone: $02 / 683440$ Telex: 19079 DEC N	REGIONAL OFFICE
DENMARK	Telephone: (617) 897.5111
	From Metropolitan Boston, 646-8800
Digital Equipment Aktiebolag COPENHAGEN	TWX: $710.3477-0217 / 0212$
COPENHAGEN	Cable: DIGITAL MAYN
Hellerupveg 66	Telex: 94-8457
2900 Hellerup. Denmark	
FINLAND	AUSTRALIA
Digital Equipment AB	AUSTralia
HELSINKI	Digital Equipment Australia Pty. Ltd.
Titismaantie 6	
SF-00710 Helsinki 71	
Telephone: (090) ${ }^{370133}$	Telephone: $439-2566$ Telex: AA20740
	Cable: DIGITAL, SYDNEY
SWITZERLAND	MELBOURNE
Digital Equipment Corporation S.A.	60 Park Street. South Melbourne. Victoria, 3205 Telephone: $699-2888$ Telex: AA40616
GENEVA	
81 Route de l'Aire	
1211 Geneva 26. Switzerland	West Perth, Western Australia 6005
Telephone: 427950 Telex: 22683 ZURICH	Telephone: 21-4993 Telex: AA92140
Scheuchzerstrasse 21	ADELAIDE
$\mathrm{CH}-8006$ Zurich. Switzerland	6 Montrose Avenue
Telephone: 01/60 3566 Telex: 56059	Norwood, South Australia 5067
Italy	BRISBANE
Digital Equipment S.p.A.	133 Leichhardt Street
MILAN ${ }^{\text {d }}$	Spring HIII
	Srisbane. Queenslend, Australia Telephone: 44040 Telex: $790-40616$
Telephone: 872748694394 Telex: 33615	
SPAIN	
Digital Equipment Corporation Ltd.	
MADRID	Digital Equipment Corporation Ltd. AUCKLAND
Ataio Ingenieros S.A., Enrique Larreta 12, Madrid 16	Hilton House, 430 Queen Street, Box 2471
BARCELONA	Auckland. New Zeeland
Ataio Ingenieros S.A., Granduxer 76. Barcelona 6	Telephone: 75533
Telephone: 2214466	
ISRAEL	JAPAN
DEC Systems Computers Ltd.	Digital Equipment Corporation International
TEL AVIV	Kowa Building No. 16 - Annex, First Floor
Suite 103, Southern Habakuk Street	9-20 Akasake 1-Chome
Tel Aviv, Israel	Minato-Ku, Tokyo 107, Jepen ${ }_{\text {Tele }}$
Telephone: (03) 443114/400763 Telex: 922-33-3163	Telephone: 588-2771 Telex: J-26428

[^0]: ${ }^{1}$ Crawford, F.R. Introduction to Data Processing. New York: Prentice-Hall, 1968.

