il

DIGITAL REStARCH’

. Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 USER'S GUIDE

COPYRIGHT (e) 1979

DIGITAL RESEARCH

¥

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
anv language or computer language. in anv form or bv anv
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specificallv disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify anv person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2 USER'S GUIDE

Cooyright (c) 1979
Digital Researcn, Box 573
Pacific Grove, California

‘ 1. An Overview of CP/# 2.0 Facilities

[N

User Interface . . « o ¢ o o o o o s o o » o @
3. Console Command Processor (CC?) Intertace . .

4. STAT Enhancements . . . o« o o ¢ o ¢ ¢ o o o =

5. PIP EnhancCements . « « « s o & =« » o @« @
6. cD Enhancements ¢ ¢ ¢ ¢ o o o
7. 'The X5U3 FPUNCEion . , « v « o o © « o & = o ®

8. 3DUS Interface Conventions . ,
9. CP/M 2,u Memory QOrganization

19, 3I05 DIfferences « « o « w s w o s = & & »

19
11
12
23

28

1. AN OVERVIEW OF CP/M 2.0 FACILITIES.

CpP/ 2.9 is a nhigh-performance single-console operating system
which uses table driven tecnnigues to allow field recontiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, wnile maintaining upward compatibility from
previous versions of release 1. Features of CP/M 2.0 include field
specification of one to sixteen logical drives, eacn containing up.to
eight megabytes. Any particular file can reach the full drive size
with the capaoility to expand to thirty-two megabytes in future
releases, The directory size can be field configured to contain any
reasonable number of entries, and each tile is optionally taggeq with
read/only and system attributes. Users of cp/™ Z:J are phys1c§11y
separated oy user numpers, with facilities for file copy operations
tfrom one user area to another. powerful relative-record random access
functions are oresent in CP/M 2.0 whicn provide direct access to any
of the 63536 records of an eight megapyte file.

All disk-dependent portions ot CP/M 2.0 are placed into a
BIOS-resident "disk parameter block" which is either hand coded or
produced automatically wusing the disk definition macro library
orovided with CP/M 2.4. The end user need only specity the maximum
nunoer of active Jisks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this intormation to generate the appropriate taoles and table
reterences for use during CP/M 2.9 operation. Deblocking information
is also provided wnich aids in assembly or aisassembly of sector sizes
wnich are multioles ot tne fundamental 128 byte data wunit, and the
system alteration manual includes general-purpose suproutines which
use the tnis depblocking information to take advantage of larger sector
sizes. Use ot these subroutines, togetner with the table driven data

access algoritnms, make CP/M 2.9 truly a universal data management
system,

File expansion is achieved by providing up to 512 logical tile
extents, where eacn logical extent contains 16K bytes of data. Cp/M
2.9 is structured, nowever, so that as much as 128K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), thus maintaining compatibility with orevious
versions while taking full advantage of directory space.

Random access facilities are oresent in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/#'s unigque data organization, data blocks are only allocated when
actually required and movement to a record position reguires little
search time. Sequential file access is uoward compatiple from earlier
versions to the full eight megaoytes, wnile random access
compatibility stops at 512K byte files. Due to CP/M 2.0's simoler and
faster random access, application orogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements whicn
cgrrespond‘to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP orovides a "login"

(All Information Contained Herein is Proprietary to Digital Researcn.)

1

function to change trom one user area to anotner. Tne CCP also
formats ulrectory aisplays 1in a more convenient manner and accounts
for ootn CRI anu hard-cooy devices in its enhanced line editing
functions.

The sections pelow point out the inaividual differences between
ce/M 1.4 ana CP/M 2.4, witn tne understanding that the reader is
eitner tamiliar witn CP/M 1.4, or has access to the 1.4 manuals.
Addgitional intormation dealing with CpP/M 2.8 I/0 system alteration is
oresentea in the Digital Researcn manual "CP/M 2.9 Alteration Guide."

(All Information Containea derein is Proprietary to Digital Research.)

2

2. USER INTERFACE.

Console line processing takes CRI-type devices into accountlwith
three new control characters, shown with an asterisk in the list below
(the symbol “ctl" below indicates tnat the control key 18

simultaneously depressed) :

rub/del removes and ecnoes last character
ctl-C repooot when at beginning of line

ctl-E physical end ot line

ctl-H oackspace one cnaracter position*

ctl-J (line feed) terminates current input*
ctl-M (carriage return) terminates inoput
ctl-R retype current line after new line
ctl-u remove current line after new line
ctl-X Dpackspace to peginning of current line¥*

In particular, note tnat ctl-H oroduces the proper packspace overwrite
function (ctl-H can pe cnanged internally to anotner cnaracter, such
as delete, through a simple single byte change). Furtner, the line
aditor keeps track ot the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or

ctl-X command.

. (All Information Contained Herein is Proorietary to Digital Research.)

3

3. CONSOLE CUMMAND PROCESSOR (CCP) IWTERFACE.

There are four functional ditferences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level, The CCP now
displays directory intormation across the screen (four elements per
line), tne U3SER command is poresent to allow maintenance of separate
tiles 1n the same directory, and the actions of the "ERA *.*" and
“SAVE" commands have changed. The altered DIR format is
selt-explanatory, while the USER command takes the form:

USER n
where n 1s an integer value in the range 0 to 15. Upon cold start,

tne operator is automatically "logged" into user area number ¢, which
15 compatible witn standard CP/M 1.4 directories. Tne operator may

issue the USER command at any time to move to anotner 1oq§cal area
witnin the same dairectory. Drives which are logged-in while
operator

aadressing one user number are automatically active ynen.the -0
moves to another user numper since a user number 15.51m9}y a prefix
wnich accesses particular directory entries on the active disks.

The active user number is maintained until changed by a
supsequent USER command, or until a cold start operation when user 1]
15 agaln assumed.

Due to the fact that user numbers now tag individual directory
entries, tne cRA *.* command has a difrerent etfect. 1In version 1.4,
tnis commana can pe used to erase a directory whicn has “garbage”
intormation, wvernaps resulting from use of a diskette under another
operating system (neaven forbpbia!l). In 2.0, however, tbe ERA *.*

Thus, it 1s necessary

command affects only the current user numoer. S
to write a simple utility to erase a nonsense disk (the orogram simply

writes the hexaaecimal pattern E5 tnroughout the disk).

I'he SAVE command in version 1.4 allows only a single memory save
ooeration, with the potential of destroying the memory image due to
directory operations following extent boundary changes. version 2.0,
nowever, does not oerform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

2
(All Intormation Contained Herein is Proorietary to Digital Research.) 'ﬁt
i

4

I

4. STAT ENHANCEMENTS.

I'ne STAI orogram has a number of additional functions which

disk parameter display, user numoer display, and file indicator

allow
manipulation, The command:
STAT VAL:
oroduces a summary of the availaple status commands, resulting in tne
outout:
Temp R/O Disk: d:=R/0 .
Set Indicator: d:filename.typ 3R/0 $R/W $SYS SDIR
Disk Status : DSK: d:D3K:
User Status : USR:
Iobyte Assign:
(list of possible assignments)
STAT commands. Tne

whicn gives an instant summary of the possible

command form:
SIAT d:filename.tyo $S

“filename.typ” 1is an
the output disolay

and
oroduces

drive
file

name,
name,

optional
ambiguous

wnere "d:" is an
unambiguous or
format:

Acc

R/O A:ED,COM
R/0 (A:PIP.COHM)
R/W A:X.DAT

5ize Recs 3ytes Ext
43 43 6k 1
55 55 12k 1
05536 128 2k 2

field to ©oe disolayed
but the remaining tields
virtual file size 1in

parameter causes the "Size"

the Size field is skipped,
are disolayed). The Size field 1lists the
records, wnile tne "Recs" field sums the numpber of virtual records in
eacn extent, For files constructed seguentially, the Size and Recs
fielas are 1identical. The "8ytes" field lists the actual number of
bytes allocated to tne correspondina file. r'he minimum allocation
unit is determinea at contiguration time, and thus tne numoer of bytes
corresponds to the record count nlus tne remaining unused space in the
last allocated bplock for sequential files, Random access files are

where tne 3S
(without the 33,

given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In tne casa of random access, the
3ize riela gives tne logical end-of-tile record position anda the Recs

logical records ot eacn extent (each of tnese
extents, nowever, may contain unallocateu “noles" even thougn tney are
added into the record count). [rhe "Ext" field counts tne number of
logical 1lex extents allocated to the file, Unlike version 1.4, the
Ext count does not necessarily corresoond to tne number of directory
entries given to the file, since there can oe up to lZoK obytes (8
Lojical extents) directly aadressed oy a single directory entry,
deoending wupon allocation size (in a special case, there are actually
250K oytes wnich can pe directly adaressed by a ohysical extent).

tiela counts the

mode, whicn 1s
the parentheses

Ifne "Acc" tield jives the R/0O or R/W
cnanged u31n3 the commands shown oelow.

access
Similarly,

(All Intormation Contained Herein is Proprietary to Digital Researcn.)

5

snown around the PIP.COM file name indicate that it nhas the "system”
The

indicator set, so that it will not be listed in DIR commands.

four commana forms

STAr d:tilename.typ $R/0
STAT d:filename.tyo $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

oermanent file indicators. The R/0 indicator
places the tile (or set of files) in a read-only status until changed
oy a suouseguent STAT command. The R/V status is recorded 1in the
directory with tne file so that it remains R/O througn intervening
cold start operations. fhe R/W indicator places the file 1in a
opermanent read/write status. The 3YS indicator attaches the system
inaicator to the file, while the DIR command removes the system
indicator. The "filename.typ” may be ambiguous or unambiguous, but 1in
eitner case,
console when the change occurs.
optional.

Wnen a file is markea R/0O, subsequent attempts to erase or write

into the file result in a terminal BDOS message

set Oor reset various

the tiles whose attributes are changed are listed at the
The drive name denotea by “d:" |is

8dos £rr on d: File R/O

Fne B0U0OS tnen waits for a console inbut before performing a subseguent
warm start (a “return” is sufficient to continue). The command form

STAT d:DSK:
lists the urive characteristics of the disk named by "d:" which is in
the range :, B, ..., Bt. tThe drive characteristica are listed in
tne format:
a: Drive Characteristics
65536: 128 Byte record Capacity
8ly2: Kilopoyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024: Recoras/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved lracks

selected drive, followed by the total record
capacity (65536 is an 8 megapbyte drive), followed by the total
capacity listed in Kilooytes. The directory size 1is listed next,
tollowed by tne "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mecnanism 1is used to detect changed media during CP/M operation
witnhout an intervening warm start. For fixed media, the number |is
usually zero, since tne media is not changed without at least a cold
or warm start. <The number of records per extent determines the
addressing capacity of eacn directory entry (l1ld24 times 128 oytes, or

wnere "a:" is the

(All Information Contained Herein is Proprietary to Digital Research.)

6

The number of records ver pblock shows the
pasic allocation size (in the example, 128 records/plock times 128
bytes per record, or 16K bytes per oplock). The listing is then
followed by the number of physical sectors per track and the number of
physical

reserved tracks. For logical drives whicn share the same
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other

logical disks. The command form

STAT DSK:

126K in the example above).

oroduces a drive cnaracteristics tapble for all currently active

drives. The final STAT command form is
STAT USR:

which produces a list of the user numbers whicn have files on the
currently addressed disk. The display format is:

Active User : o
Active files: 4 1 3

where tne first line lists the currently addressed user number, as set
numbers

by the last CCP USER command, followed by a 1list of user

scanned from the current directory. In the above case, the active
user numper is ¥ (default at cold start), witn three user numbers
which have active files on the current disk. The operator can
subsgqueptly examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR

command at the CCP level.

' (All Information Contained Herein is Proprietary to Digital Researcn.)

7

5. PIpP ENAANCEMENTS.

NFSTINATION FILE IS R/O, DELETE (Y/N)?

PIP provides three new functions whicnh account for the features

ot CP/M 2.0. All tnree tunctions take the form of file parameters

wnicn are enclosed in square orackets following the appropriate file
names. The commanas are:

is issued. If the operator responds with the character "y" then the
tfile is overwritten. Otnerwise, the response

** NOT DELETED **

Gn Get File from User number n

(n in the range v - 15) is issued, the file transfer is skiopped, and PIP continues with tne

next operation in sequence. In order to avoid the promot and response
1n the case of R/O file overwrite, the command line can include the W

W Wwrite over R/0 files without
parameter, as shown below

console interrogation
R Read system files PIP Ba=ge*.conim
which copies all non-system files to the A drive from the 8 drive, and
overwrites any R/J files in the process. If the operation involves
several concatenated files, the #4 parameter need only be included witn
tne last file in the list, as shown in the following example

The G command allows one user area to receive data files from another.
Assuminj the operator has issued the USER 4 command at the CCP level,
tne PIP statement

PIP X.Y = R.¥[G2] PIP A.DAT = B.DAP,F:NEN.DAT,G:OLD.DAT[NJ

reads file X.Y from user number 2 into user area number 4. The
command

) files witn the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not

PIP A:=A:*.*[G2] recognized. The command line

cooles all of tne tiles from the A drive directory for user number 2
1nto the A drive directory of the currently loggea user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

PIP ED.CUM = B:ED.CUM[R]

for examole, reads the ED.COM tile from tne B drive, even if it has

oeen dmarked as a R/O ana system file. The system file attributes are
Jote also that the PIP orogram itself is init@ally cqpied to a conied, 1f present.

user area (so that subsequent files can be copled).usan the SAVE

Ine sequence ot operations shown below effectively moves PIP

command.

from one user area to the next. . It should oe noted that downward compatipility with previous
USER 4 login user 4 ::rsxocs of QP/M is_only maintained if the f@le éoes not exceed one
DDT PIP.COM load PIP to memory g gaby :’ no tile attripbutes are set, and tne file is created by user
(note PiP size s) d' . I" C°m9a§1b111ty is regu1red wilth non-standara (e.g., "double
o FEEGER £6 'CCP ensity”) versions of 1.4, 1t may be necessary to select 1.4
USER 3 login user 3 COmpatlplle! mode when const;uctlng the internal disk parameter block
s (see thne CP/M 2.0 Alteration Guide," and refer to Section 10 which

SAVE s PIP.COM describes BIOS differences) .
wnere s 1s tne integral numoer of memory “"pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under ODT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1DAV, then PIP.COM
requires 1C nexadecimal pages (or 1 times 16 + 12 = 28 pages), and
tnus the value of s is 28 in the subsequent save. Once PIP is copied
1n this manner, it can then be copied to another disk belonging to the
same user number through normal pio transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent R/O status. If attempt is made to overwrite a R/O

file, the oromot

. (All Infor

All Information Contained Herein is Proprietary to Digital Researcn.) . . .)
(Al Y mation Contained Herein is Proorietary to Digital Research,)

]
9

b. ED ENHANCEMENTS.

I'ne CP/M standard orogram editor provides several new facilities
1n the 2.9 release, Experlence has shown that most overators use the
relative line numoerinj feature of ED, and thus the editor has thne "y*
(verity Line) ontion set as an initial value. The operator can, of
course, daisaole line numoering by typing the "-v* command. If you are
not familiar witn the ED line number mode, you may wish to reter to
tne Appendix 1n tne c£D wuser's gquide, where the “v" command is

aescriped,

ED also takes file attributes into account. If the operator
attempts to edit a reaa/only file, the message

** FILE IS READ/ONLY **

appears at the console. The file can ope loaded and examined, but
cannot Dpe altered in any way. Normally, the ovoerator simply ends the
edit session, and uses STAT to change the file attribute to R/W. 1f
tne edited tile nas the "system"” attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is disolayed at the console, and the edit session is aborted.' Agaip,
tne STAT oprogram can be usea to change the system attrioute, if

desireaq.

Finally, the insert mode ("i") command allows CRT 1line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

10

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.8 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor, The XSUB command 1s included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 18) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XsuB

DDT

I$1.dEX

R

Go

SAVE 1 $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. .The
XSUB program loads, followed by DDT which is sent the command lines
“IX.HEX" "R" and "G@" thus returning to the CCP. The final command

“SAVE 1 Y.COM" is processed by the CCP,
The XSUB program remains in memory, and prints the message
(xsub active)
on each warm start operation to indicate its presence. Subsequent

submit command streams do not redquire tne XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,

if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. B8DOS INTERFACE CONVENTIONC,

Cp/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location ¢005H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double pyte values returned in
4L (for reasons of compatibility, register A = L and register B = H
aoon return in all cases). A list ot CP/M 2.d calls is given below,

with an asterisk following functions wnich are either new or revised
from version 1.4 to 2.08. HNote that a =zero value 1is returned for
out-of range tunction numbers,
¢ System Reset 19* Delete File
1 Console Inout 20 Read Sequential
2 Console OQutout 21 Write Seguential
3 Reader Input 22* Make File
4 Puncn Jdutput 23* Rename File
5 List Jutout 24* Return Login Vector
6* Direct Console I/0 25 Return Current Disk
7 Get 1/0 Byte 26 Set DMA Address
3 Set I/0 Byte 27 Get Addr(Alloc)
9 Print String 28* Write Protect Disk
lo* Read Console Butfer 29* Get Addr (R/0O Vector)
11 Get Console Status 30* Set file Attriputes
12* Return Version Number 31* Get Addr(Disk pParms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15* Ooen File 34* Write Random
16 Close File 35*% Comoute File Size
17* Search for First 36* Set Panaom Record

ly* Searcn for next

(functions 2v, 29, ana 32 should be avoided in application programs to
maintain upward compatipility with MP/M.) The new or revised functions
are descrioed pelow.

Function 6: Direct Console I/0.
Direct Console 1/0 1is supoorted under CpP/Y 2.8 tor those
anplications wnere 1t 15 necessary to avoid the 8D0S console I/0
operations. Programs wnicn currently perform airect I/0 tnrougn tne
3Ius shoula pe cnangea to use direct I/0 under 3DOS so that they can
ve tully supbportea under future releases of MP/M and Cp/M.

Uoon entry to function 6, rejister £ eitner contains hexadecimal
fF, denotinj a console inpbut reguest, or register £ contains an ASCII
cnaracter, It tnhe input value is FF, then function 6 returns A = ¥y

1f no cnaracter is ready, otnerwise A contains tne next console input
character,
It the 1nout value in E 1s not FF, then function 6 assumes that

£ contains a valia ASCII character wnicn is sent to the console.

(A1l Information Contained Herein is Proprietary to Digital Research.)

12

Function 13: Read Console Buffer.

The console puffer reaa overation remains uncqanged gxcegt 523;
i iti i pported, as descrioed in Section <. I
console line edalting 1s suppo 7 P

also that certain functions which return the carriage tq ;he
so only to the column position where the

oosition (e.3., ctl-X) do 0
promot ended (previously, the carriage returned to the .extreme 1gft
margin). This pew convention makes operator data input and line

correction more legible,

Function 12: Return version Number.

Function 12 has been redefined to orovide information wnich

allows version-independent programming (this was previously the "lift
head" function whicn returned HL=0049 in version 1.4, but performed no
oberation). The value returned by function 12 is a two-bvte value,
with H = 00 for the CP/M release (H = @1 for Mp/M), and L = 83 for all
releases oprevious to 2.0. CP/M 2.8 returns a hexadecimal 2@ in
register L, with supsequent version 2 releases in the hexadecimal
range 21, 22, througn 2F. Using function 12, for gxamole, you can
write application orograms whicn orovide botn seguential and ranaom
access functions, witn random access disabled when operating under

early releases of CP/M.

In the tile overations describea below, DE addresses a fi;e
control olock (FCB). Further, all directory overations take place in
a reserved area which does not affect write puffers as was the case 1n
version 1.4, with the exception of Searcn First and Searcn Next, where

compatipility is requirea.

Tne rile Control 3lock (FCB) data area consists ot a seguence of 33
oytes for sequential access, and a series of 36 Lytes in tne case that
tne file 1is accessaa ranaomly. rhe default file control plock
normally located at Jd5Cd can pe usea for random access files, since
oytes ¥d7Du, WO7Ed, and JUTFd are availaole for this purpose. For
notational ourposes, the FC3 format is shown with the followlng
fielas:

(all Information Contained ierein is Proorietary to Digital Research.)

13

sl

bo 01 02 ... 08 09 16 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr darive cocge (¥ - 16)
¥ => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B8,

16=> auto disk select drive P.

£, .+E8 contain the file name in ASCII
uoper case, with high bit = @ i

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 9@
tl', t2', and t3' denote the
bit of these positions,

tl' = 1 => Reaa/Only file,
t2' = 1 => 3YS file, no DIR list
ex contains the current extent number,

normally set to 80 by the user, but
in range o - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from § - 128

dd...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a seguential file operation, normally
set to zero by user

td,rl,r2 optional random record number in the
range ¥-65535, with overflow to r2,

rd,rl constitute a 16-bit value with
low byte r@, and high oyte rl

Function 15: Open File,

I'ne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as =zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure comoliance. Phus, the byte is cleared to ensure
uoward comoatipoility witn the latest version, where it is required.

Function 17: Searcn for First.

Searcn First scans the directory for a match with the file jiven
oy tne FCB addressed by DE. The value 255 (nexadecimal FF) 1s
returned if the file is not found, otherwise a value of A egual to ¢,
1, 2, or 3 is returned indicating the file is oresent. In the case
tnat the file is found, the current DMA address 1s filled with the
record containing tne directory entry, ana the re%at;ve starting
position is A * 32 (i.e., rotate the A register left 5 oits, or ADD A
tive times). Altnough not normally reguired for application programs,
the directory information can be extracted from the puffer at this

position,
An ASCII question mark (63 decimal, 3F hexadecimq}) in any
position from fl1 through ex matches the corresponding tfield of any

directory entry on the default or auto-selected disk drive. If the ar

field contains an ASCII question mark, then the auto disk select
the default disk is searched, with the search

function 1is disapled,

function returning any matched entry, allocated or free, belonging to

any user number. This latter function is not normally used T{
a

application nrograms, out does allow complete flexioility.to scan
current directory values. If the dr field is not a guestion mark, tne

s2 byte is automatically zeroed.
Function 18: Search for Next.

The Search Next function is similar to the Searcn First
function, except tnat the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File,

The Delete File function removes files whicn match the FCB
addressed by DE. The filename and type may contain ambijuous
references (i.e., question marks in various positions), but the drive
select code cannot pe ambiguous, as in the Search and Searcn Next

functions,

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range @ to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Researcn.)

15

Function 22: Make File.

fhe Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed uoon entry to the 3DOS.

Function 23: Rename File,

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range ¥ to 3 is returnea,

Function 24: Return Login Vector.

Pne login vector value returned by CP/M 2.0 is a 16-bit valug in
L, wnere the least significant bit of L correspoqu to the first
drive A, and the nigh order bit of H corresponds to the sixteenth

drive, lapellea P. nNote that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return,

Function 28: Write Protect Current Disk.

The disk write orotect function provides temoorary write
protection for the currently selected disk. Any attemot to write to
tne disk, before the next cold or warm start operation produces the

message

Bdos Err on d: R/0O

Function 29: Get R/O Vector.

Function 29 returns a bit vector 1in register opair HL which
indicates drives whicn have the temporary read/only pit set., Similar
to function 24, the least significant pit corresponds to drive A,
while tne most significant bit corresponds to drive P, The R/O bit is
set eilther by an exolicit call to function 28, or by tne automatic
software mecinanisms within CP/M whicn detect changed disks.

Function 39: Set File Attributes,

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 34 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

matcn, and changes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not presently usgd, lbug
may be useful for applications programs, since tney are not involve

in the matcning orocess duriny file open and close operations.
Indicators t5' tnrough f3' and t3' are reserved for future system

exoansion,

Function 31: Get Disk Parameter 3lock Adaress.

lhe address of the BIOS resident disk pargmeter block 1s
returned in HL as a result ot tnis function call. This address can be
used for either of two purposes, First, the disk parameter values'can
pe extracted for display ana soace comoutation purposes, or transient
programs can dynamically change the values of current disk oargmetgrs
when the disk environment changes, if required. Wormally, apolication
orograms will not require this facility.

Function 32: Set or Get User Code,

An aoplication program can change or interrogate the currently
active user number by calling function 32, If register E = FF
nexadgecimal, tnen tne value of the current user number is re;urned in
register A, where the value is in the range J to 31. If register E is
not FF, then the current user number is changed to the value of E

(modulo 32).

Function 33: Read Random.

Pne Read Random function is similar to the sequential file read
operation of orevious releases, except that the read operation takes
olace at a particular record numper, selected by the 24-bit value
constructed from the three byte fiela followina the FCB (oyte
oositions r® at 33, rl at 34, anda r2 at 35). Note that the seguence
of 24 oits is stored with least significant oyte first (r9), middle
oyte next (rl), and high byte last (r2). CP/M release 2.8 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must pe zero, however, since a non-zero value 1indicates

overflow past the end of file.

Thus, in version 2.9, the rd,rl byte pair 1is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from ¢ to 65535, providing access to any particular
record of the 8 megabyte file. In order to orocess a file wusing
random access, the base extent (extent V) must first be opened.
Altnough the pase extent may or may not contain any allocated data,
this ensures tnat the file is oroperly recorded in the directory, and
is visible in DIR requests. The selected record numoer is then stored
into the random record field (rd,rl), and the BDOS is called to read
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

12

error code, as listed below, or the value 30 indicating the operation
was successful. 1In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
reaa operation, the record number is not advanced. Tnus, suosequent
random read operations continue to read the same record.

Upon eacn random read operation, the logical extent and current
record ‘values are automatically set, Thus, the file can be
sequentxally‘ read or written, starting from the current randomly
accessed position, Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write overation, You can, of course, simply advance
tne random record vposition following each random read or write to
ootain the effect of a sequential I/Q operation,

‘ Error codes returned in register A following a random read are
listed below.

01 reading unwritten data

#2 (not returned in random mode)
03 cannot close current extent
¥4 seek to unwritten extent

¥5 (not returnea in read mode)

26 seek past ohysical end of disk

Error coae vl and v4 occur wnen a random reaa operation accesses a
data block whicn has not been previously written, or an extent which
nas not been created, which are equivalent conaitions., Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 86 occurs whenever byte r2
is non-zero under the current 2.9 release. Normally, non-zero return
codes can bpe treated as missing data, with zero return codes
indicating ooeration complete.

Function 34: Write Random.

The Write Random operation is 1initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed pefore the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to corresoond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is eitner read or rewritten again as the
sequential operation begins., You can also simply advance the random
record position following each write to get the effect of a sequential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research,)

18

switch as it does in seguential mode under either CP/M 1.4 or cp/M

2.0,

The error codes returned by a random write are identical to the
random read overation with the addition of error code 45, wnich
indicates that a new extent cannot be created due to directory

overflow.

Function 35: Compute File Size.

size of a file, the DE register npair
addresses an FCB in random mode format (bytes rﬂ,.rl,.and r2 are
oresent). The FCB contains an unambiguous file name wnich 1s usgd in
the directory scan. Upon return, the random record bytes conta%n the
wyirtual® file size which is, in effect, the record address of the
record following tne end of the file. if, following a call to
function 35, the high record byte r2 is 41, then the file contains the
maximum record count 65536 in version 2.8. Otherwise, bytes rd and rl
constitute a 16-bit value (r@ 1is the least significant byte, as

pefore) which is the file size,

when computing the

pata can be apoended to the end of an existing file by simoly
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the

preset record address.

Tne virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then tne file may
in fact contain fewer records than the size indicates. 1, ¢tor
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size |is
65536 records, althougn only one block of data is actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which nas been read or
written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to 1initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record vosition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
oosition alqng wltp the key and record number in order to find the
exact starting position of the keyed gata at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular ooint in the file, function 36
1s called whicn sets the record number, and subsequent random read and
write operations continue from the selectea point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function ot reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RAWDGM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The orogram looks for a file by tne name
X.DAT (in this oparticular case) and, if found, proceeds to orompt the
console for input. If not founa, the file 1is created bpefore the
orompt is given. Each prompot takes the form

next commana?

and 1s followed by operator input, terminated by a carriage return.
Tne inout commands take the form

nW nR Q

wnere n is an integer value in the range 3 to 65535, and W, R, and Q
are simole command characters corresponding to random write, random
read, and quit orocessinj, resoectively, If the W command is issued,
tne RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again
The nrogram begins with an initialization section where the
input file is opened or createu, followed by a continuous loop at the
label “"ready" where the inaividual commands are interpreted. The

default file control block at d05CH and the default buffer at ¥080H
are used in all disk operations, The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

L)

which contain the orincipal inout line processor, called “readc. "
rhis particular program shows the elemengs of random access
processing, and can be wused as the basis for further program

develooment,

.*Ii!ﬁltﬂl!***kt*ﬁtt*tﬂtlﬁl*ﬁ*ﬂ*'lttkt*kﬁ*ﬂ***ttl’.l
x

*
*

.ok
’

;* sample random access program for co/m 2.9
'R
:ﬁtﬁtttﬂtttﬂxt*t*tt*liwtﬁkﬁﬁtlt**ﬁk*tt*ﬁlﬁ**tttttttt

¥109 org 19dh ;base of tpoa

00090 = ;eboot eau pO0dh ;system reboot.

0005 = pdos eau 9095h ;bdos entry point

6ol = éoninp equ 1 ;console input functiqn

9002 = conout equ 2 ;console output Egnctlon

g0y = pstring equ 9 ;print string until '$°

ddpa = rstring egu 19 ;read console puffer

Jdduc = version egu 12 ;return version number

Joef = openf equ 15 ;file open function

0919 = closef eaqu 16 ;close function

gol6e = make £ equ 22 ;make file function

Jull = reaar equ 33 ;read randqm

4922 = writer eau 34 ;write random

Jd5¢c = %co eau ¥35ch ;detault file contro} block

dv7a = ranrec equ fcb+33 ;random record position

0d7t = ranovf equ fco+35 ;nigh order (overflow) byte

089 = ouff equ 4980h ;buffer address

08dd = cr equ ddn ;carriage return

dbda = 1f equ Yvah ;line feed
;tttkittntiltti*tttkttkttt*it**itﬁtt*lRﬂtl*twt*k*i*t
% *
;* load SP, set-up file for random access *
' s
;tlt*ltttttit*kt*ttilt'tittt*ﬁﬂ!xitﬁtllitt*tt*il***t

9108 31lbco 1xi so,stack
; version 2.9?

0103 Qedc mvi c,version

d105 cdise call bdos

0108 feld cpi 22n ;version 2.0 or better?

dlva d2166 jnc ver sok
H baa version, message and go back

J1led 111bd 1xi d,badver

¥119 cddad call orint

9113 c3000 jmo repboot
versok:
H correct version for random access

(All Intormation Contained Herein is Proorietary to Digital Research.)

21

Jllo
vlle
ollo
Blle
ol1f

0122
0124
127
vlza
9120

dl2e
9131
0134

0137
d13a
9134
vl4e
3142
4144

2147
0149
dl4c
0l4f
2159
2153

3156
158

915b
d1l5e

(All Information Co

vedf
115co
cde sy
3c
c23¥

Jelo
115c®
ca¥se
3c
c2379

113ad
cada@
c3949

cdesy
227dd
217f0
3040
fe51
c2569

veld
115cy
cddse
3c
cab9d
c3909

fes57
c2890

11440
cddad

e w4 PY Se we we e Se =0 Se

~ o~

.
’
.
’
’

* % % % X

mvi c,ooenf ;op i

: ;open default fcb

1xi d,fco

call bdos

inr a ;err 255

A i pecomes z
jnz reaay s

cannot open file, so create it

mvi c,makef

1x1 d,fcb

call odos

inr a ;err 255 becomes zero
jnz reaady

cannot create file, directory full
1xi d,nospace

qall orint

jmo reboot ;back to ccp

AR XK R AR R R KA R X AR RN AR KR AR AR AR AR RN RNARKA AN RRNNANN AR
*

looo back to “ready” after each command *
*

A AR KRR KRR KRR RN R AR AR KRN R R AR KRR RN A AR AN N AN AR ARk N

m

W

Q
<

file is ready for processing

call readcom ;read next command
snld ranrec ;store input record#
1xi h,ranovf

mvi m,0 ;clear high byte if set
coi o ;quit?

jnz notg

quit processing, close file

mvi c,closef

1xi a,fco

call bdos

inr a ;err 255 becomes @

jz error ;error message, retry
jmp reboot ;back to ccp

*t!ﬂ**tttiﬁi***tttl*tﬁttt*ti*tti*lt!'*tﬁtti*'t*ﬁ'*ﬂ
*

*
*

*
* end of quit command,
*

S22 2222222 2 2 8 0 0 0

orocess write

ﬁ*ttlttt**ti*ttttﬁﬁtil*lil***i*t**

notg:
not the guit command, random write?
cpi ‘W'
jnz notw
this is a random write, fill buffer until cr
1xi d,datmsg
call print ;data prompt

ntained Herein is Proprietary to pigital Research.)

22

¢

Jd161
9163

0166
0167
V168
d16o0
dléc
016d
dlof

8172
0173
4174
9175

vl73

d17a
dl7c
d17f
9182
vlg3
dlod

0189
¥1db

d1de
0199
9133
8196
0197

819a
919d
W19f

dla2
gla3
flad
d1a6
0lad
Plaa

delf
21800

c5

e5
cdc2d
el

cl
feod
cal8d

77
23
0d
c2669

36900

ve22
115c¢9
cdeso
b7
c2b9%9
c337v¢

fe52
c2b99d

de2l
115cd
cdd50
b7
c2byyd

cdcfo
vedyd
21809

le

23
eb67f
ca379
c5

e5

mvi Cnl 27 ;up to 127 characters
1xi n,ouff ;destination
rloop: jread next character to puff
push b ;save counter
push h ;next destination
call getchr ;cnaracter to a
pop h ;restore counter
DoD (o] srestore next to fill
cpi cr ;end of line?
jz erlooo
3 not end, store character
mov m,a
inx h ;next to fill
dcr C ;counter goes down
jnz rloop ;end of oufter?
erloop:
; end of read loop, store 90

mvi m,d

write the record to selected record number

~. s

mvi c,writer

1xi d,tcb

call hdos

ora a ;error code zero?

jnz error ;message if not

jmp ready ;for another record
;Q'ﬁt.lﬁﬁ!IIQhiﬁkltititl*tt!ttt*ttl*!lt!tﬁﬂtltt*lltl
:' *®
:* end of write command, nrocess read il
«® x
;Q'l!l'.l".l.'."‘ilk*tt*tttittlttﬁtﬁtlt*li**ltt'*t
notw:
H not a write command, read record?

cpi *R?

jnz error ;skip if not
’
: read random record

mvi c,readr

1xi d,fcb

call bdos

ora a ;return code 9¥?

jnz error
;
H read was successful, write to console

call crlf ;new line

mvi c,128 ;max 128 characters

1xi h,ouff ;next to get
wloop:

mov a,m ;next character

inx h ;next to get

ani 7fh :mask parity

jz ready ;for another command if 00

push b ;save counter

push h ;save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

;read the next command line to tne conbuf

vlab teld cpi ;qraphic?
dlaa ddcgy cne ok N :
1oy el i PULSHR jakip shhent 1f nos dle5 116bd 1xi d,orompt
d91bl cl pop o 0led cddad call print ;command?
4102 da : . dleb deda mvi c,rstring
91b3 c2a2@ (]irc\: :loop oA dled 1l7a¢ 1xi d:conbuf
vloe ¢3379 jmp ready . ' 01td cdosy call bdos ;read command line
; ; command line is present, scan it
;:ittillttll*tﬂ!lti'ltttlt!*t*t*t***litttt*lk*ﬁttt*i gigg figgg i‘:; 'd] 2°n11n'2;‘:;:n:1;’?ngaﬂa
Sk % ‘ 91fy la readc: ldax 38 :next command character
Vx end of read command, all errors end-uo here * f dlfa 13 inx d :to next command position
' * -
SRR AR R KKK KKK I KK AR KRR XK KRR AR KA XK KRR AR R KK KKK RN KRR KKK gii: 2; g:a . canBot be entt of aRmrs
SEGE ' ; not zero, numeric?
21b c : . p1fd d634d sul N))
Jioz iéggg 1xi d,errmsg gl1tf feda cpi 10 ;carry if numeric
Shur ~i378 call orint 3201 42139 jnc endrd
¢ 30 readv : add-in next digit
'" 0204 29 dad n %2
; KA AR KRR KRR KR AR KR R AR KRR AR AR R KRR KRR R AR A AR AR R AR AR XK 0205 44 mov c,],
N) * 0206 44 mov o,n ;bc = value * 2
:' utility subroutines for console i/o * 0207 29 dad h ;%4
' * 0203 29 dad h ;%8
$ '.‘*'!Iil****t*!txttﬁttttﬂ!ltltltﬁ*tttk!tt*'*t*ilﬁ* 0209 09 dad D ;12 + '8 = ’10
getchr: 02da 85 add 1 ;+digit
i :read next console character to a 0290 dL mnov 1l,a
9lc2 vedl avi c,coninp d20c a2£9¢ jnc readc ;for another char
vlcd cdisy call odos J20t 24 inc h soverflow
Jlc7 ¢y ret 0210 c3£99 jmo readc ;for another char
; endrd:
outcnr:) . : end of reaa, restore value in a
‘ jwrite character from a to console) 0213 c63¥ adi G ; command
vlcg vevl mvi c,conout 9215 febl coi Tyt ;translate case?
vlca >f mov e,a ;character to sena J217 a3 re
dlco cdds¥ call 0dos :send cnaracter ; lower case, mask lower case bits
Jdlce cy ret 9218 e65t ani 1015111lo
i 12 v2la cY ret
crlf: "

;send carriaje return line feea ;tﬂtttttﬁtﬁkﬁtalttxtttﬂlt!itttkt!t*l!kxtx*ktttuattﬁt
vlcf 3edd mvi a,cr ;carriage return : * »
91dl cdcéd call putcnr ;% string data area for console messages *
¥1d4 3eda mvi a1t :line feed : * i
0136 CdCdﬂ call outcnr ;tthtt*t-ttxnttttttt*itttttttxaxtﬂwtttaiu*utttttttl
dla’d cI ret ! padver

; ¥21lp 536£79 db ‘sorry, you need co/m version 2§’
print: nospace:

;print the buffer addressed by de until § 923a 4e6£29 do ‘no directory space$’

Ylda as oush d datmsqg:
d1do cdcfd call crlf ¢24d 54797¢ db ‘type data: $'
Ylae dl 0oD a ;jnew line errmsq:
Jdlaf 0ed9 avi c,ostring 9259 457272 db ‘error, try again.s'
dlel cdasd call haos ;orint the string ‘ orompt:
dled c9 ret 9260 4e6579 db ‘next command? $'

readcom

. ' (All Information Contained Herein is Proprietary to Digital Researcn.)

(All Information Contained Herein 1is proprietary to Digital Researcn.)
25

24

7-Ill'lll!l.ll.Il'll.tl.ltI.ﬁtlltlll'ﬂ'.ltik!l'l.tiﬂ
-
:
. . B
;* fixed and variable data area i
- %
H
®
;ttllttl!lltltitllttkt.ttttt*ttttlttnitktttttt'att:t

g%;g 21 gg:?uff Qb conlen ;length of console buffer
2 iz: ds i | ;jresulting size after read
c conlin: ds 32 ;length 32 buffer
Jd2l = conlen equ $-consiz
d29¢c ; ds 32 :
— ;16 level stack
d2pC end

(All Intormation Contained Herein is Proprietary to Digital Researcn.)

26

4. CP/M 2.0 MEMORY ORGANIZATION.

fiela-altered to Eit

gimilar to earlier versions, CP/M 2.0 is
computer memory

various memory sizes, depending uvon the host)
configuration. Typical base addresses for popular memory sizes are
shown in the taole below.

Module 29k 24k 32k 43k 64k

cecp 340¢4d 44904 6400H A400H E40¢H

BDOS 3COVH 4CQ9H 6Co0H ACd0H ECO0H

BIOS 4A09H SA0dH 7A00H 8Ad0H FAOJH

Too of Ram 4FFFH SFFFH JFFFd BFFFH FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 22Kk

Intel MpS-808 with standard 13M 3" floppy disk drives. The disk
layout is shown below:
Sector Track 99 Module Track 91 Module
1 (Bootstrap Loader) 40894 BDOS + 489H
2 34490H cCp + d0VH 419vH BDOS + 509H
3 34380d CCp + 0D8YH 4186H BDOS + 589H
4 35404 ccp + 100H 42604 BDOS + 6024
5 35804 ccp + 184dH 4249H BDOS + 634d
6 3600d CCP + 20uH 4300d BDOS + 70uH
7 368UH CCp + 28YH 43891 BDOS + 780H
-] 3740 CCP + 39044 44044 BDOS + 8294
9 37s04d ccp + 389d 448vd BDOS + 88YH
1v 380ud ccp + 490H 4599H BDOS + 909H
11 3348uH ccp + 480H 45304 BDOS + 989H
12 3900H ccp + 500H 46J0H BDOS + AQOH
13 39344 ccp + 580H 46884 BDOS + ABOH
14 3A00H CCP + 6004 4709H BDOS + BO@H
15 3A80H cCp + 680H 4780H BDOS + Bd4@H
16 3890H ccp + 720 430YH BDOS + C90@H
17 3B30H ccp + 789H 48804 BDOS + C8OH
18 3C00d BDOS + 000H 49904 BDOS + DB@H
19 3C80H BDOS + 080H 498¢YH BDOS + D8@H
20 3p@@H BDOS + 10¥H 4AGOH BIOS + WOUH
21 3D8PH BDOS + 1d80H 4A80H BIOS + 080H
22 3EQPH BDOS + 200BH 4B00H BIOS + 100H
23 3E80H BDOS + 280H 4380H BIOS + 180H
24 3F09H BDOS + 300H 4C@0H BIOS + 200H
25 3F80H BDOS + 380H 4C80H 310S + 280H
26 40608 BDOS + 400H 4pd0@H BIOS + 300dH
In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BDOS portion,
however, occupies one more 256-byte page and the BIOS portion extends

through the temainder of track ©1. Thus, the CCP is 800H (2048
decimal) bytes in lengtn, the BDOS is EO@H (3584 decimal) bytes in
length, and the BIOS is up to 330H (898 decimal) bytes in length. In
¥e251on12.ﬂ, thehBIOS portion contains the standara subroutines of
.4, along wit some initialized table space i 1 i
g W ey Wi P , as described in the

(All Information Contained Herein is Proprietary to Digital Research.)

27

4V. D4US VIFPLERENCES,

The CP/M 2.6 Basic 1/0 System diff i

) e ers only slightl i
from its oredecesssors, Two new jumo vector entry pgintg a:Z dc?pcept
ah new sector translation subroutine jg included and a -
characteristics table must be defined, rThe skeletal form of s
changes are found in the Program shown below e RO

13 org 4000h

2: maclio diskdef

z: jmo boot

5: jmp listst ;list status

6: Jmp Sectran ;sector translate
7z disks 4

8s 3 large capacity drive

9: bpb equ 16*1624 ;bytes per block
19: rpb equ bpb/128 ;records per block

llf maxb equ 65535/rpo ;max block number
122 diskdef 0,1,58,3,bpb,maxb+l,128,ﬂ,2

13: diskdef 1,1,58,,bpb ma
1 .1,58,, ;Maxb+l,128,0,

14: diskdef 2,9 ° e

15: diskdef 3,1

16: ;

17: boot: ret ;inop

lg: ;)

19: listst: xra a ;nop

24: ret =

21: ;

22: seldsk:

23: ;d;ive number in ¢

24: Ixi h,? ;0820 in hl produces select error

;23 mov a,c ia is disk numper 93 ... ndisks-1
: cpi ndisks ;less than ndisks?

57:) rnc] _ireturn with HL = 9Yd0 if not
g: prooer disk numoer, return dpb element address

29: mov 1,¢

39: dad h %2

3ile dad h |

32; daa h %8

33: daa h ;%16

34: 1xi d,dpbase

35: dad d ;HL=.dpb

36: ret

37: 3

38: selsec:

39: ;sector number in ¢

49: Ixi h,sector

41: mov m,c

42: ret

43: ;

44: sectran:

45: itranslate sector BC using table at DE

46: Xxchg JHL = .tran

47: dad b ;single precision tran

(All Information Contained Herein is Proprietary to pDigital Research,)

28

®

.'

dad b again if double precision tran

:g; ' mov 1,m ;only low byte necessary here
58 i fill botn H and L if double precision tran
51z ret sHL = 2?2ss

52: ;

53: sector: ds 1

54: endef

554 end

Referring to the program shown above, lines 3-§ represent ‘the
BIOS entry chtor of lg elements (version 1.4 Qef1nes only 15]u:o
vector elements). The last two elements provide access to ;.e
“LISTST" (List Status) entry point ftor DESPOOL. The use of ; is
particular entry point is defined in the DESPOOL documentation, an 15
no different tnan the previous 1.4 release. It should pe noted tha
the 1.4 DESPOOL orogram will not operate under version 2.0, out an
update version will be availapble from Digital Research 1in the near

future.
The "SECTRAN" (Sector Number Translate) entry shown in the jump

vector at line 6 provides access to a BIOS-resident sector translation

suproutine. This mechanism allows the user to specify the sector §ke3
factor and translation for a particular disk system, and is describe
below.

liorary 1is shown 1in tne 1listing, called .DI$KDEF.
included on line 2, and referenced in 12-15. Although it is not

necessary to use the macro liorary, it greatly simplifies the Tlsk
definition process, You must have access to the MAC macro assembler,

of course, to use the DISKDEF facility, while 'the macro library 1is
included with all Cp/M 2.8 distribution disks. (See the CP/M 2,0

Alteration Guide for formulas which you can use to hand-code the
tabples produced by the DISKDEF library).

A macro

A BIOS disk definition consists of the following seguence of

macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 4,...
DISKDEF 1,...

DISKDEF n-1

where the MACLI3 statement loads the DISKDEF.LIB file (on the same
disk as your B3I0S) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
vour system, where n is an integer in the range 1 to 16. A series of
OISKDEF macro calls then follow which define the characteristics of
each logical disk, @ through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proorietary to Digital Research.)

29

fixed data tables, and thus must pe placed i

: J ¥ in a non-executaple o]
of your BIOS, typically directly tollowing the BIOS jump vectgr S

The remaining portion of your BIOS i i
. . > is defined followi

QIanDEF macros, with the ENDEF macro call immediately prec:é?gq EE:
END statement. — The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skt],bls,dks,dir,cks,ofs, [0]

where

dn ;s the logical disk number, ¢ to n-1

fsc is the tirst physical sector number (¢ or 1)

lsc is the last sector number

skf is the optional sector skew factor

ols is the data allocation block size

dir @s the number of directory entries

cks is the number of “checked" directory entries

ots is the track offset to logical track 40

(0) is an ootional 1.4 compatibility flag

The valqe “dn“»is the drive number being defined with this DISKDEF
macro invocation, The "fsc” parameter accounts for differing sector
numoering systems, and is usually 8 or 1, The "lsc" is the last
numpbered sector on a track. when present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table accgrdlng to the skew, If the number of sectors is less than
256, a sxnglg—byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the valugs 19024, 2048, 4096, 8192, or 16384. Generally,
performgnce increases with larger data block sizes since there are
fewe; directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced., The "dks"
specifies the total disk size in "bls" units., That is, if the bls =
2848 and dks = 1000, tnen the total disk capacity is 2,348,000 bytes.
If dks 1s greater than 255, then the block size parameter bls must be
greater than 1624, The value of "dir" 1is the total number of
directory entries which may exceed 255, if desired. The ‘“cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem, If the disk is permanently
mounted, then the value of cks is typically #, since the probability
of cnanging disks without a restart is quite low. The "ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system

(A1l Information Contained Herein is Proprietary to Digital Research,)

30

ingle large capacity

space or to simulate several logical drives on a s :
included when file

physical drive. Finally, the [@] parameter is e
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16k is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF £.+3
ristics as a previously defined drive jJ.

density system, which is compatible with
o invocations:

gives disk i the same ch§racte
A standard four-drive sxngle :
version 1.4, is defined using the following macr

DISKS 4
DISKDEF]
DISKDEF 1
DISKDEF 2
DISKDEF 3

26,6,1024,243,64,64,2

ENDEF

with all disks having the same parameter values of' 26 sectors per
track (numpered 1 tnrough 28), with 6 sectors skipped between each
access, 1024 bytes per data pblock, 243 data plocks for a total of 243k

byte disk capacity, 64 checked directory entries, and two operating
system tracks.
The definitions given in the program shown above (lines 12

access to the largest disks addressable by CP/M

through 15) provide
2.6, All disks have identical parametets, except that drives @ and 2
skip three sectors on every data access, while disks 1 and 3 access

each sector in sequence as the disk revolves (there may, however, be a
transparent nardware skew factor on these drives).

The DISKS macro generates n “disk header blocks," starting .at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU 3
XLT0,0000H,0000H,00004 ,DIRBUF ,DP33,CSVP ,ALVH

DPEY: DW

DPEL: Dw XLTO,0000H,0000H,0¥0d0H,DIRBUF ,DPBJ,CSV],ALV]
DPE2: DW XLT®,0000H,0000H,0002H,DIRBUF ,DPBO,CSV2,ALV2
DPE3: DwW XL'TO,0000H,0000H,0000H,DIRBUF ,DPBO,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
3. The values contained within the disk parameter header are

through

described in detail in the CP/M 2.8 Alteration Guide, but basically
address the translation vector for the drive (all reference XLTO,
which is the translation vector for drive 8 in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

Sixec cats taoles, and thus must pe placed in a non-executaole norticn
of your BIOS, typically directly following the BIOS jump vector,

~ The temainlnq_portion of your BIOS is defined following the
?IaKDEF macros, with the ENDEF macro call immediately preceding the
END statement. _Tng ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.
The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf),bls,dks,dir,cks,ofs, [0)

where
dn is the logical disk number, ¢ to n-1
fsc is the tirst physical sector number (¢ or 1)
lsc 1s the last sector number
skf is the optional sector skew factor
o}s is the data allocation block size
dir is the number of directory entries
cks is the number of “checked" directory entries
ots is the track offset to logical track 20
(8] is an opotional 1.4 compatibility flag

The valqe “dn" is the drive number being defined with this DISKDEF
macro llnvocation. The "fsc" parameter accounts for differing sector
numoering systems, and is usually 8 or 1, The "lsc" 1is the last
numbered sector on a track. when present, the “"skf" parameter defines
tne sector skew factor which is used to create a sector translation
table accqrding to the skew, If the number of sectors 1is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf _p;rameter is omitted (or equal to #9). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 163384. Generally,
performqnce increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "“dks"
specifies the total disk size in "bls" units, That is, if the bls =
2048 and dks = 1068, then the total disk capacity is 2,048,060 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1624. The wvalue of "dir" 1is the total number of
directory entries which may exceed 255, if desired, The “cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem, If the disk is permanently
mounted, then the value of cks is typically 8, since the probability
of cnanging disks without a restart is quite low. The "ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

e or to simulate several logical drives on a s;ngle large capag}fz
Finally, the [@] parameter is included when i e
required with versions of 1.4 which have bee

This parameter ensures that o?ly
or

spac ’
physical drive.

compatibility is : Sy Binhe
modified for higher dens .
16K is allocated for each directory record, as was the case

previous versions. Normally, this parameter is not included.

For convenience and economy of table sopace, the special form

DISKDEF i,3

eristics as a previously detined.drive'j.
system, which is compatible with
lowing macro invocatlions:

gives disk 1 tne same chgract i
A standard four-drive slngle density
version 1.4, is defined using the fol

DISKS 4
DISKDEF 0
DISKDEF 1
DISKDEF 2
DISKDEF 3

26,6,1024,243,64,64,2

ENDEF
i i tors per
with all disks having the same parameter values of. 26 sec
track (numpered 1 tnrough 26), with 6 sectors skipped between each
access, 1924 bytes per data plock, 243 data blocks for a total of 243k
pbyte disk capacity, 64 checked directory entries, and two operating
system tracks.

he definitions given in the program shown above (lines 12
tnrougg 15) provide gaccess to the largest disks addressable by CP/M
2.8. All disks have identical parametets, except that drives @ and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolvesl(there may, however, be a
transparent nardware skew factor on these drives).

The DISKS macro generates n "disk header plocks," starting Iat
address ODPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU 3

DPE®: DW XLTﬂ,ZOUGH,EGOGH,BODUH,DIRBUF,D933,CSVO,ALV@
DPEL: DwW XLT®,0000H,0000H,00900H,DIRBUF ,DP8A,CSV1,ALV]
DPE2: DW XLTE,ﬂﬂﬂﬂﬂ,DBO@H,ﬂﬂﬂﬂH,DIRBUF,DPBG,CSVZ,ALVZ
DPE3: DW XLTO,0000H,2000H,0000H,DIRBUF,DPBA,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
aadress the translation vector for the drive (all reference XLTO,
which is the translation vector for drive ? in the above example),

. (All Information Contained Herein is Proprietary to Digital Research.)

31

l6-bit “scratch"” addresses, followed by the
directory buffer address, cisk varameter plock address, check vector
aaaress, ana allocation vector aadress. The check ana allocation
vector adaresses are generated by the ENDEF macro in the ram area

following the BIOS coae and taples,

tollowed oy tnree

The SELDSK function is extended somewhat in version 2.0, In
particular, the selected disk number is passed to the BIOS in register
C, as pefore, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.4,
nowever, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE@, DPEl, DPE2, or DPE3, in the
above example) in register HL. If SELDSK returns the value HL =
J8¥dH, tnen the BDOS assumes the disk does not exist, and prints g
select error mesage at the terminal. Program lines 22 through 36 give
a samole CpP/M 2.8 SELDSK subroutine, showing only the disk parameter

header address calculation.

I'ne supbroutine SECTRAN is also included 1in version 2.8 which
oertorms the actual 1logical to physical sector translation., 1In
earlier versions of CP/M, the sector translation process was a part of
tne BDOS, and set to skip six sectors between each read, Due
aiffering rotational soveeds of various disks, the translation function
nas Dbecome a woart of the BIOS in version 2.4. Thus, the BDOS sends
sequential sector numoers to SECTRAN, starting at sector number 4.
The SECTRAN suproutine uses the seguential sector number to produce a
translatea sector numper which is returnea to the B8DUS. The BDOS
subseguently sends tne translated sector number to SELSEC before the
actual read or write is verformed. Note that many controllers have
the capapility to record the sector skew on the disk itself, and thus
there is no translation necessary, In this case, the "skf" varameter
is omitted in the macro call, and SECTRAN simply returns the same
value whicn 1t receives. The table shown below, for example, is

constructed when the standard skew factor skf = 6 is specified in the

DISKDEF macro call:

XLTd: DB Y, 7,43,19,25,5,03.,17%,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. Tne sector to translate is received in register
pair BC. Only tne C register 1is significant if the sector value does
not exceed 255 (B = @9 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresoonding to the first element of a disk parameter
neader (XLT¢ 1in the case snown above). Tne SECTRAN subroutine then
fetches the translated sector number py adding the input sector number
to tne pase of the translate taple, to get the indexed translate table
aadress (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. Note that if the number
ot sectors exceeds 255, the translate table contains 16-bit elements

wnose value must be returned in HL.

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

wnich is loaded upon cold start, but must

whicn indicates

at 4DBYH-1, and
addresses are free for use after tne sys

size is a multiple of 128 bytes.

on sector : |
operations, thus allowing plocking and deblocking to take

BI0S level.

be available between the

The size of the uninitialized RAM area is

3I0S and the ena of memory. 1
determined by EQU statements generated Dby the EanF macro. For a
standard four-drive system, the ENDEF macro might oroduce
4C72 = BEGDAT EQU 3
(data areas)
4DBY = ENDDAT EQU $
913C = DATSIZ EQU $-BEGDAT
ends

initiali i i 724

that uninitialized RAM begins at location 4C 7

occupies 913Cd Doytes. You must ensure that these
tem is loaded.

whose sector
by the BDOS
for pre-read
place at the

M 2.0 is also easily adapated to disk subsystems
Information is orovided

ce/
write operations whicn eliminates the need

See the "CP/M 2.0 Alteration Guide" for additional details

concerning tailoring your CP/M system to your particular hardware.

(All Information Contained Herein is pProprietary to Digital Research.)

33

o

.

