
(j]) [)jlJjTAl REEEARCH®
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

~P/M 2 USER~ GUIDE

••
I

COPYRIGHT (c) 1979

DIGITAL RESEARCH

..

. •

•
. . a... -

Copyright

1:opyright (cl 1_979 bv Digital Research. All rights reserved.
No pa•t of this puhli<'.'ation m11v he rep•oduced. transmitted,
transcribed, stored in a retrieval system, or translated into
anv language or computer language, in anv form or bv anv
means, electronic , mechanical. magnetic, optical. <'.'hemicai ,
manual or otherwi~e. without the prior written permiss;on of
Digita l Research, Post Office Box 579, Pacific GroVf,,
r11 1ifornia Q3950.

Disclaimer

Dig;tal Research makes no representations or warranties with
respect to the contents hereof anrl specif;callv disclaim~ 11nv
implied warranties of merchantability or fitness Cor anv parti
cular purpose. Further. Digital Research reserves the right
to revise this publication anrl to make changes from time to
time in the content hereof without ohligation of Digital
Research to notify anv person of such revision or changes.

Tr11dem11rks

rP/ M is a registered trademark of Digital Research. MP/M ,
MAC.: , and SID are trademarks of Digital Research.

· '· I
I

I

- •

- -

l.

2.

3.

4.

5.

6.

7.

8 .

9.

10 .

An uverview or

user Interface

Console Com:nano

CP/M 2 USER'S GUIDE

Cooyright (c) U7'j
Digital Researcn, aox 579
Pacific Grove, California

Ct>/M 2.0 facilities

;>rocessor (CC?) Intertace

s·.rAr t:nnance:nents

Pii> .::nnancements

C:il Enhancements

·rne X3U'3 Function

300S Interface Conventions

CP/M 2 . ~ 11emory Organization

JIOS Differences

l

3

4

5

8

lil

11

12

27

28

•

•

•
L _

1 . AN OVERV!Ew OF CP/M 2.0 FACILirIES .

CP/M 2.~ is a high - pe rformance single- console operating system
wnicn uses table driven tecnnigues to allow field cecontiguration _to
match a wide variety of disk capacities. All of the fundamental file
restrictions ace removed , wnile maintaining upward compatibility from
previous versions of release l. Features of CP/H 2 . 0 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes . Any particular file can reacn the full drive size
witn the capaPility to expand to thirty-two megabytes in _future
releases. The directory siz e can be field configured to contain ~ny
reasonable number of entries , and each tile is optionally tagged with
read/only and system attcioute s . Users of CP/M 2 . 0 ace physically
separated oy us e r numoecs , with facilities for file copy operations
trom one user ar ea to anotner. Powerful relative-record random access
functions a r e or es ent in CP/ M 2. 0 whlcn provide direct access to any
ot th e bS53 6 r eco rds of an eight megaoyte file .

All disk - deoendent oortions of CP/M 2. 8 ar e placed into a
BI OS-resident "disk oarameter b lock " which is either hand coded or
produced automaticaliy using the disk definition macro library
pr ovided with CP/M 2.u . The end user need only specity the maximum
numoe r of active Jisks , the starting and ending sector numoers , the
data allocation size, the ~aximum extent of the logical disk,
d irectory size information, and reserved track values. -rhe macros use
tnis intormation to generate the appropriate tables and table
reterences for use during CP/M 2. 0 operation . Deblocking information
is also provided wnich aids in assembly or oisassembly of sector sizes
wnich a re multiples ot tne fundamental 12B oyte data unit , and the
sy s t em alteration manual includes general-purpose suoroutines wnich
us e tne tnis deolocking information to take advantage of larger sector
sizes . Use of these subroutines, toqetner with the taole driven data
access algoritnms , make CP / M 2. ~ truly a universal data manag ement
s ystem .

f il e exoansion is achieved oy providing up to 512 logic a l tile
e xt ents, wher e eacn logical extent contains 16K byte s of data. CP/M
2. ~ is s truc tur ed , nowever, so that as mucn as 128K oytes o f data is
addressed by a single physical extent (corcesponaing to a single
directory entry) , tnus maintaining compatibility with previous
versions while taking full aavantage of d irectory space.

Random access facilities are present in CP/M 2. 0 which allow
imme ai a te reference to any recor d of an eight megabyt e file. Us ing
CP/ M' s unique data organization , data blocks are only allocated when
actually required and movement to a record oosition requires little
search time. Sequential file access is uoward · comoatiole from earlier
versions to tne full eight megaoyt e s , wnile random access
compatibility stops at ~12K byte files. Due to CP/M 2.U"s simoler and
fa s ter random access, application orogrammers are encouraged to alter
tne1r programs to take full advan~age of the 2.0 faciliti e s.

Several CP/M 2.0 modules ano utilities have improvements whicn
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user ar eas , while the CCP orovides a " login "

(All Information Contained Herein is Proprietary to Digital Researcn.)

l

func ti on t o cha nge r r om one use r a r ea to a notne r . Tne CCP also
for ~at s o ir cc t o ry aisplays in a mo r e co nve ni e nt ma nner and accounts
for ootn CRr ano hara - copy devices in it s e nhanced line ed iting
f un ct i ons.

The sections oe l ow ooin t out th e inoividual d iff e r e nces be twe en
CP/M l . 4 a no CP/M 2. d , witn tne understanding that the reader is
e 1t ne r tam ili a r witn CP / M 1 . 4 , or has access to the 1 . 4 manual s.
Adaiciona l inro rmat i on dea ling with CP/ M 2.0 I /0 sys tem alteration i s
or e senteo i n the Dig ital Resea r cn ma nua l "CP / M 2.0 Altera tion Guid e. "

(All Information Containea rlerein is Proprieta r y to Digi t al Research.)

2

•

•

2 . U~ER INTERFACE.

Console line processing takes CR~-type devices
three new control characters, shown with an asterisk
(the symbol "ctl " below indicates tnat the
s imultaneously depressed):

into account with
in the list below
control key is

rub/de!
ctl -C
ctl-E
ctl - ti
ctl-J
ctl - M
ctl-R
c tl - tJ
ctl - i{

removes a na ecnoes last character
reooot when at beginning of line
physical ena ot lin e
oackspace one cnaracter position*
(line · feed) termina te s current input•
(carriag e return) terminates inout
r e type current line after new line
r emove current line after new line
oacKspace to oeginning of current line •

In oarticular, not e tnat ctl - H oroduces the proper oacKspace overwrite
fun~tion (ctl - H canoe cnanged internally to ano~ner cnaracter, such
as delete, through a s imple single oyte change) . Furtner , the line
editor keeps track or the current prompt column position so that the
operator can properly align aata input following a ctl-U, ctl - R, or
ctl - i{ commana .

• (All Information Contained Herein is Proprietary to Digital Research.)

3

J. Cvrl SOLE CUMMMD l' ROC t:SSOR (CCP) I lnERFACt.

The r e are f our f unctional ditferences between CP / ~ 1 . 4 and CP/M
2.u a t t ne console com,11and Processor (CCPJ level. The CCP now
disPl ays o irec t ory intormation across the screen (four e lements per
l in ~), tne U3ER command is p re s ent to allow maint e nance or separate
t iles 1n the s ame directory, and the actions ot the " ERA • • · and
" SAv i " commands nave chanqed . The altered DIR format is
selr-exPlanato ry, while the USER command takes the form:

USER n

wne r e n is an integer value in the range 0 to 15. uoon cold start ,
tne ooe r a tor is automatically " logged " into user area number~ . which
1s compatible wit n standard CP/M 1.4 airectories. Tne operator may
i ss ue tne USER command at any time to move to anotner iogical area
witnin t he same directory. Drives which are logged- in while
a a d re s si ng o ne user number are automatically active wnen the operator
move s to anothe r user numPer since a user number is simPly a prefix
wnich accesses particular directory entries on th e active disks .

'I'he active
suoseauent USER
i s again a ss ume d .

user number is maintained until changed by a
command, or until a co ld start operation wh e n user U

Due co the fac t tnat user numoers now tag individual directory
e ntri es, tn e tRA • . • commana has a difrerent ettect. In version 1.4 ,
tn1 s c om ma na ca n Pe used to erase a directory wnicn has ·garbage "
in t o rmati o n , oernaPs resulting from use of a disKette under another
ooe r a ting system (heaven fo roio!) . In 2.0, howev e r , the ERA w w

command a ff e cts o nly the cur r en t user nu moe r . Tnus, it is necessary
to writ e a simole utility t o erase a nonsense disk (t he prog ram sirnoly
wr i t es t he hexa a ecimal pattern ES tnroughout the disk).

The SAVE c omma nd in ve r sio n 1.4 allows only a s ing l e memory save
ooe r a ti on with the ootential of dest roy ing the memory i mage due to
d i rec t o ry' operat ion s fo llowing ex tent ~ou ndar y changes . version 2.v.
nowever , uoes not oe rt o r rn di r ec t o r y ooe rations in user da t a areas
afte r d i sk wri t es, and thus the SAVE operation canoe used any number
of t i mes without a lte ring the memory image.

(All Intormation Co ntain ed He r e in i s Pr oori e tary t o Di g it a l Research .)

•

•

4 . STAT ErlHAWCEMENTS.

The STAr pr og ram na s a number o f additional function s whi ch
a ll ow disk parameter display, user numoer display, and file indicator
manipulation. The command:

STA"r VAL:

oroouc es a summary of the availaole status commands, resulting in tn e
OU tpu t:

·remo R/0 Disk:
:,et Indicator:
Disk Status
Use r Status
l obyt e Assig n :

d : =R/0
d:filename.tyo
OSK : d: l)5K:
USR:

(list of possible assignments)

$R/O $Rf~ ~SYS $DIR

whicn g ive s an instant summary at the possible STA·r commands. ·rne
command form:

SfAT d:filename.tyo ~s

wnere "d: " is an optional
unamoiguous or ambiguous
format:

size
4tl
55

05536

Recs
4tl
55

12d

.:lytes
6k

12K
2k

drive name, and " filename.typ " is a n
file name, 9rociuces the output display

Ext Ace
l R/0 A:ED.COM
l R/0 (A:PIP.COM)
2 R/>'I A:X . OA'i'

wh e re tn e $5 Paramete r causes the "S ize" field to be disolaycd
(without the $5, tne Size field is skipped, but the remaining tields
are disolayedJ. ·rne Size field lists the virtual fil e s i ze in
r eco ras, wnile tne " Recs " field sums the numoer of virtual reco r ds in
c ac n exte nt . for f il es constructed seque ntially, the Size a nd Recs
ti e l as a r c identical. The •gy tes" fi e ld lists the actual nu~ber of
by te s a llocated t o tne co rresoondi ng file. ~he minimum allocation
unit is dete rmin ea at co ntiqu ration ti:nc, and thus tne numoer of bytes
corresponas to the reco rd count ~lus tn e remaining unused space in tne
la s t allocatea olock for sequential files . Random access files are
g i ven da t a areas o nly wnen written, so the Bytes field conta ins the
o nly accur ate allocation fi gure. In tne case of rand om access, tne
3ize iie l d ~ives tne l og ical end-of-tile recor d oosition anci the Recs
tiela counts cne logical re co rds at eacn extent (each ot these
ex t e nt s, nowever, :nay contain unallocateo " no l es· even tnou g n th ey ar e
a:Jded into th e r eco rd count). !'he " Ext " fiela counts tne num oer of
l og ica l 16K exte nts allocated to th e fil e. Unli ke ve r s i o n 1. 4, th e
Ext count does not necessarily co rr esoond to tn e number of di r ecto r y
e nt r ies given to the tile, s inc e tn2re canoe uo to 12oK oyt e s (~
l o :i1ca l e xt e nts) di r ec tlv aodressed oy a s in~le dir ecto r y entry,
~e?enJiny upon al l oca tion s ize (in a soecia l case, th e r e are actua lly
L ~o« oyte s wn1ch ca n oe directly ada ressed by a ohysical ex tent) .

~n e " Ace " fie l d ~ives t he R/J or R/ ~
cnan::ied us 1n•'.J tn e co:nmancis show n oe low.

access mode, whi c n 1s
Similarly, th e oa r en t he s e s

(Al l Int o rmat i on Conta ine a rl e r e in is t'r op ri e tar y t o Diqital Re searcn.)

5

r

snown a r ou nd th e l" I i' .C.J~ fi l e n a me i ndica t e that it has the "s ystem "
i nJ i ca tor se t , so tha t it wi ll n o t be li s t ed in DI R c omm a nds . Tne
four com~ano fo r ms

s r Ar d : ti l e name. typ ~R/ 0
STAT d:t il e name. t yp $R/~
STAT d :f il e name. t yp $SYS
srAT d:fi len ame . ty p $DI R

se t o r r ese t va r ious oe r ma n en t f il e indicator s. Th e R/ 0 indicator
places t he f ile (or s e t of f il es) in a read- only status until ch a nq ed
oy a s uo seq ue nt STAT comma nd . Th e R/0 statu s is r e corde d in th e
01recto ry with t n e fi l e so that it r e main s R/ 0 througn interve n i ng
cold s tart o perations. The R/ ~ indicator place s th e file in a
oe r ma nent r eao/ wr ite s t a tu s. The SY S indicator a ttacnes the system
i n~ 1ca t o r t o t he fi l e , wh i l e th e DI R command r e move s the system
indicato r . Tne " f il e n ame. ty p " may be ambig uous or unambiguous, but in
e it ne r c ase , t ne tile s wn os e attribute s are changed are listed at th e
conso l e wnen the c na nge o c cur s. The driv e name denot e o by " d :" is
op ti o nal.

Nhen a t i le i s mar ke a R/ 0, subs equent attempt s t o er ase or write
into t he file r es ult i n a termin a l BOOS me s sag e

ddos i rr on d : Fil e R/0

rne duOS tn en waits fo r a co nso le ino ut be for e perf o rming a subseque nt
wa r m sta rt (a " r e turn " is su f ficient - to continu~) . The command form

., ·rAr d : DSK :

lists t he u riv e c h ara c t e ristics of the disk named by " d : " which is in
tne range A: , 81 , ••• , P1 . Th@ driv@ c::haraeteristie!I are listed in
t ne fo r ma t :

~= urive Characte ri s t i c s
65536: l 2 ij Byte r ecord Ca pacity

d l ~2 : Ki l o oy t e Drive c aoacity
1 2d: 32 ay t e Dir e cto r y En tries

U: Cnecked Directory Entries
1024 : Reco r ds / Ex tent

128 : Reco r ds / Bl oc k
5d : Sec tor s / Track

2 : Reserved Tr ack s

wne r e " a: " i s t he s el e cted d rive , fo l l owe d by the total recor d
caoac ity (65536 i s an B meg aoyt e driv e) , followed by the tot a l
caoac ity lis t ed in Ki looytes. The dir ec torv siz e i s li s t e d ne xt ,
tallowed by t ne " cnecked " e ntries. The nu mber of c h e ck e d e ntries is
usua lly identical t o t he direc t o r y s iz e fo r r emovaol e me dia, since
this me cnanism is used to d e t e ct c h anged media during CP/M operation
w1 tnou t an int e r ve n ing warm sta rt . For fix e d med ia , t ne number i s
usual ly z e r o, s ince t he med i a i s no t ch a nged without a t l eas t a co l d
o r wa rm s ta r t . The numbe r of records p e r e xtent d etermines the
add r ess ing c apacity of eacn d ir ec t o r y e ntry (1 0 24 time s 1 28 oytes, o r

(All Info r ma t ion Co ntained He r e in i s i' r opri e t a r y to Digital Research .)

6

•

•

12dK in the example aoove) . The number of records oer olock s h o ws the
basic allocation . size (in the example, 128 records /cl o ck time s 1 28
bytes per record, or 16K cytes per clock). The listing i s th e n
followed by the number of physical sectors oer track and the number o t
reserved tracks . For logical drives which share the same physical
disk , th e number of r e served tracks may be quite large , s ince this
me chanism is used to skio lower - numbered disk ar e as allocate ~ t o otne r
logical d isks. The command form

srA·r DSK:

oroduces a drive cnaracteristics taole tor all currently a c ti ve
drives . ·rhe final STA'1' command form is

STAT USR:

which oroduc e s a list of the user numbers whicn have files on t he
currently addressed disk. ·r he display format is :

Active User : 0
Active Files : 0 l 3

where tne first line lists the currently address e d user number, a s s et
by the last CCP USER command , followed by a list of user numbe r s
scanned from the current directory . In the above case, the active
user numoer i s ~ (default at cold start) , witn three user numbe r s
whicn have active files on the current disk . The operator can
subsequentl y examine the directories of the otne r user numbers by
logging - in with USER l , USER 2, or USER 3 commands , followed by a DIR
command at the CCP level .

• (All Information Contained Herein is Proprietary to Digital Research .)

7

5. PIP ENHANCEMENTS .

PIP provides three new functions whicn account tor the features
o t CP/ M 2 . 0 . All tnree tunctions take the form ot file oarameters
wnicn are enc losed in square orackets following the aporopriate file
names. The commands are:

Gn Get File f r om user number n
(n in the ranged - 15)

W write over R/0 tiles without
console interrogation

R Read system tiles

·rhe G co:nmand allows one user area to receive data files trom another.
Assumi n~ the operator has issued the USER 4 command at the CCP level ,
tne PIP statB~ent

PIP X.Y = X. Y[G2]

reads file X.Y from user numoer 2 into user area number 4 .
command

PIP A: =A:* . * [G2]

·rhe

coo1es all of t he tiles from tne A drive directory for user number 2
into the A drive directory of tne currently loggea user numoer. Note
tnat to ensure file security , one cannot copy files into a different
a rea tnan the one which is currently addressed by the USER command.

~o te also that the PIP orogram itself is initially copied to a
use r area (so that subseq uent tiles can be c op ied} using the SAVE
com:nand . rne sequence ot 09erations shown below effectively moves PIP
from one user area to the next .

US ER "
001' PIP . CO!-!
(note PIP size

G0
USER 3
SAVE s PIP . COM

login user d
load PIP to memory

s}
return to CCP
login user 3

wner e s is the integral numoer of memory "pages " (256 byte segments }
occup i ed by PIP. Tne number scan oe determined when PIP.COM is
loaded unde r ODT, by referring to the val ue under the "NEXT " disolay.
If fo r e xample , the next availaole address is 1000 , then PIP.COM
requ ires lC hexadecimal oages (or 1 times 16 + 12 28 page s) , and
t nus the va lu e of sis 28 in the subseauent save . Once PIP is cooied
in this manne r , it can then be copied t o anotner disk belonging to the
sal!le use r number through normal pio transfers .

Under normal operation , PIP will not overwrite a file which is
se t to a pe rmanent R/0 status . If attemot is made to overwrite a R/0
file, the orompt

(All Information Contained Herein i s Pr oprietary to Digital Researcn . }

n~srrNATION FILE IS R/ 0, OELErE (Y/N)?

i s issued . If the operator responds with the character " y " then the
f ile is overwritten. Otnerwise, the response

- ** NO·r DELETE:D **

•

-

is issued, the file transfer is skippped, and PIP continues wit n tne
next operation in sequence . In order to avoid the or omot and r es oonse
in the case of R/0 file overwrite, the command line can include thew
parameter , as shown Pelow

PIP A:=8:*.COM[w]

which cooies all non- system files to the A drive from the s d rive, and
overwrites any R/J files in the orocess. If the operation involves
several concatenated files , the N parameter need only be included with
tne last file 1n the 11 s t, as shown in the following example

PIP A. DAT= s.oAr,F : NEW.DAT,G:OLD.DAT[w]

f iles witn the system attriPute can be included in PIP transfers
if the R parameter is incluaed , otherwise system files ar e not
recognized . The command line

PIP E:O.C0M = B: ED.Cv~[R]

for e xa:nPl e , reaJs the ED.COM tile from the B drive, even if it has
bee n marked as a R/0 ana s ystem file. The system file attributes are
cooied , 1f present.

. It should oe noted that downward com9atioility with previous
ve rsions of CPI~ 1s _only maintained if the file does not exceed one
;egaoy t e, no file attr10utes are se t, and the file is created oy us e r
• . I! com?at1b1l1ty 1s required with non-standard (e .g., "double

density l _vers1~ns of 1.4 it may be necessary to select 1.4
com9a t1b1l1ty mooe when constructing the internal disk oarameter olock
(see _tne "CP/M _ 2.0 Alteration Guide, " and refer to Section 10 which
descr1Pes BIOS differences).

(All Information Contained Herein is
ProPrietary to Digital Research.}

9

l

o . £ 0 £~t!AtlC EMEN'I' :, .

f he CP/M s t a nda ra o r ogram edito r orovi dc s s eve ra l new fac ilities
1n the 2. ~ r e l ea s e. Exre r ience ha s sho~ n that mos t ope r ators use the
r e l a tiv e li ne nu moe r i n1 f e atu r e o f ED, and thu s th e edit o r ha s th e "v"
(\/ e rlt y Line) oo ti on s e t a s an initial va l ue. ·rh e ope rat or ca n, of
cou r se, Jisaol e line nu moering oy typing the •- v · com ma nd . If you a r e
no t ram1l 1a r wit n t he EO line numoer mode, you may wish to reter to
t nc Appena 1x in tn e C:O us e r ' s guiae , where the · v· com man d is
oesc r i oed .

ED a l so t ake s fil e att ri but es into accou nt .
a tt ernp t s to ed it a reaa/only file , the message

•• FILE IS READ/Oi'lLY **

I f the ope rator

a poears at the console . The file can oe loaded and examined , but
cannot be al tered in any way . No rmally , the ooerator simply ends the
ed i t sess i on, and us e s SfAr to change t he til e ~ttri oute to R/ ~. I f
t ne e dited tile nas the "system " attribute set , the message

"SYSTEM" FILE NOT ACCESSIBLE

is d isplaye d at t he c onsole , and the edit session is aborted . Again,
t ne STAT oro gram can oe useo to change the system attrioute, if
oes ir eo .

rinally , the insert mode (" i " l command allows CRT line editing
functions , as described in Section 2, above .

(All Information Contained Herein is Proprietary to Digital Research .)

10

-

•

•

7 . rHE XSUB FUNCTION.

An additional utility program is supplied with version 2,0 of
CP/M , called XSUB , which extends the power of the SUBMIT facil i ty to
include line input to programs as well as the _console command
processor. The XSUB command is included as ~he first line of your
submit file and , when executed , 3elf-relocates directly below the CCP.
All subsequent submit command lines are processed ~y XSUB, so that
programs which read buffered con sole input (BDOS function 10) r ece ive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
1$1. if EX
R

G0
SAVE l $2 .COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes x for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DD'£ which is sent the command lines
"IX.HEX " "R" and "G0 " thus returning to the CCP. The final command
"SAVE 1 Y. COM" is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not re~uire tne XSUB, unless an intervening
cold start has occurred. Note th3t XSUB must be loaded after DESPOOL ,
if both are to run simultaneously .

(All Information Contained Herein is Proprietary to Digital Research.)

11

I

d. J DOS I NrERFACE C0NVENf l 0NC.

CP/ ~ 2.0 s ys t em calls take olace in exactly the same '11anner as
ea rlie r ve r s ions , with a call to location ~005H, function number in
r eg ister C, and information address in register oair DE . Single byte
va lues are returned in regist e r A, with double oyte values returned in
rlL (for rea so ns o f compatibility , register A= Land register B = H
uoo n r e turn in all cases) . A list ot CP/M 2 . il calls is given below,
wi t n an asterisk following functions which are either new or revised
from ve rsion 1 . 4 t o 2 . 0 . ~ote that a zero value is returned for
ou t -o t range tunction numbers .

J Sv s t e'TI Rese t
l Co nsole In out
2 Cons:il e Ou t ? ut
3 Reade r I no ut
4 ?uncn Ju tout
:i Li st J utout
6• Di r ect Console 1/0
7 Ge t I /0 ayte
d Set 1/0 Byte
, Print String

10* Re ad Console But fer
11 Ge t Console Status
12* Re turn Version Number
lJ Re set OisK Sys tem
14 Sel ec t OisK
15 • Ooen Fi l e
16 Clos e File
17 • Sea r ch fo r First
l d• Searcn tor Ne xt

19* Delete File
2~ Read Seque ntial
ll write Sequential
22* Make Fil e
23* Rename File
24* Return Login Vector
25 Return Current Disk
26 Set OMA Address
27 Get Addr(Alloc)
28* write Protect DisK
29* Get Addr(R/0 Vecto r)
30* Set File Attrioutes
31* Get Addr(Disk Parms)
32• Set/Get user Code
33* Read Random
34* 1,r ite Rando"!I
35* Comoute File Size
36* Se t Panaom Pecord

(iunctio ns 2ij, 2~ . ana 32 snould be avoided in applicati on programs to
ma intain uoward comoatibil ity with MP / M.) The new or revised functions
a r e desc r ioed oelow.

Functio n 6: Direct Consule 1/ 0.

Di r ec t Co nso l e I /0 is s uooort ed under Cl'/'·l 2.J tor those
a~nl i ca ti ons wn e r e it i s necessa ry to avoid tn e aoos console I / 0
ope r a ti ons . ~r og ram s wnicn cu rr ently perf o rm a ir ect I / 0 tnr ougn tne
3I u5 shoula oe cnangea to use di rect 1/0 unde r GDOS so that t hey can
:i e tully suopo rteo under futu r e r e l ea se s of MP /M -,nd CP/ M.

Ucon e ntry t o function 6, r egiste r E e it ne r :ontain s hexadecima l
Ff, u~no tin~ a conso l e in put r euuest, o r r eg i s t e r e cont a ins an ASCII
cna r acte r . It t ne inout va lu e i s FF, t he n f unction 6 re t urn s .11 = J0
if no cna r acte r i s r e3dy, o therwi se A conta in s th e next co nso l e inout
cnaracte r .

It t he 1nou t va lu e in e i s no t FF, then functi on 6 assumes that
8 contains a valiu ASCII ch aract e r wnicn i s sen t t o th e conso l e.

(All Information Co ntain ed He r e in i s Pr oPr i e tary t o u iqital Re sea r ch .)

L .
! 2

e

e

Function 10: Re ad Console Buffer .

Tn e console ouf fer r ead ooeration remains uncnanged excc~t that
console line eaiting is supported, as descrioe~ in Section 2, Note
also that certain functions which return tne carriage to the lettmoS t
oosition (e.g . , ctl-X) do s o only to tne column positi~n whe re t~~
prompt ended (oreviously, the carriage returneu to the _extreme l e
margin) . Thi s r ew convention makes ope rator data 1nout and line
correction more legible.

Fun c tion 12: Ret urn Version Numbe r.

, unction 12 has bee n redefined to orovide infor ma ti on wnich
allows ve r s ion-indepe nd e nt orogramminq (t h is _was previously th e " lift
head " fu ncti on wnicn returned rlL=~000 in ve r s i on 1 . 4, but oerformed no
ooe ration) . rhe va lue returned by function 12 is a two-bvt e va lue,
with H = 00 for the CP/M release (H = 01 for MP/'!), a nd L = U:J far a ll
releases orevious to 2.0 . CP /M 2.0 returns a hexadecimal 2~ in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, througn 2F. Us ing function 12 , for examol e, yo u can
write a~olication orograms whicn orovide botn seque nti a l and ran dom
access functions, witn random access disabled whe n operating unde r
early releases of C~/M.

In the t il e ooerations describea below, DE addresses a file
control oloc~ (F CB). Further, all directory ooerations tak e ola ce in
a re s erved area whi ch does not affect write cutt e r s as was th e ca se in
ve rsion 1.4, witn the exception of 5earcn First a nd Se arcn Nex t, whe r e
comoatioility is requirea .

·rn e file con tr o l JlocK (FCB) data area consists o t a sequence of 33
by t es for seq uenti a l access, and a series of 36 uy t es in tne case that
tn e f il e is accessea random ly . fhe default fil e co ntr o l o lock
norma lly l oca t ed 3t J ,JJC rl canoe usea f o r random 3ccess t il es, s ince
oy t es ~07D ,i , 0U7 Erl, a nd J07Frl 'He available for tni s ouroos e . Fo r
notational a urpo se s, the FC3 format is shown wit h th e foll owino
f i e las:

(All Info rma ti on Con t ained rie r e in i s Proorietary to Digital Re s earch .)

lJ

I

\

ld r lfllf21/ / lfaltllt2lt3lexlslls2lrcld~l/ /l dnlcrlr0lrllr21

0~ fil 02 •.. U& 09 10 11 12 13 14 15 16 ..• 31 32 33 34 35

where

fl. .. f 8

drive code (u - 16)
~ => use default drive for file
l => auto disk select drive A,
2 => a uto disk select drive 8,

16= > auto disk select drive P.

contain the file name in ASCII
uoper case , with high bit= 0

tl , t 2, t3 contain the file type in ASCII
upper case, with high bit= 0
tl ', t2 ', and t3 ' denote the
oit ot these oositions ,
tl ' l => Read/Only file,
t2' = l => SYS file , no DIR list

ex contains the current extent number,
no r:nally set to 00 by the user, but
in range~ - 31 during file I /0

sl r ese rved for internal system use

s2

re

d0 .• . dn

e r

r~,rl , r2

r ese rved for int e rnal system use , set
to zero on call to OPEN, MAKE , SEARCH

record count for e xtent "ex, ·
takes on valu es from 0 - 128

filled-in oy CP/ M, reserved for
system use

cur rent record to read or write in
a seq uen tial file ooeration , normally
se t t o zer o by user

oo tional random record number in the
r a nge ~- 65 535, with overflow to r2 ,
r~,rl constitute a 16 - bit value with
l ow byte r0 , and high oyte rl

Func ti on 15 : Ope n File.

rne Open File operation is identical to previous definitions,
w1t h th e e xcep tion that by t e s2 is automa tically zeroed. Note that
previous vers i ons ot CP/M defined thi s byte as zero , but made no

(All Info rmati on Con taineo Herein is Proo rietary to Digital Research.)

l 4

e

cnecks to assure comoliance. rhus , the byte is cleared t~ e nsure
upward compatioility witn the latest version, where it is required.

Function 17: Searcn for First.

Searcn first scans the directory for a match with th e file ~i ven
by tne fCB addressed by DE:. The value 255 (nexadecimal ff) is
returned if the file is not found, otherwise a value of A equal to~.
1, 2, or 3 is returned indicating the file is oresent . In t he case
tnat the file is found, tne current DMA address is filled w1tn the
record containing tne directory entry, ano the relative s tarting
position is A • 32 (i.e., rotate tne A register left S oits, or AuD A
tive times). Altnough not normally required for aoolication orograms,
the directory information can be extracted from th~ buffer at this
posit ion.

An ASCII question mark (63 decimal, 3f hexadecimal) in any
position from tl through ex matches tne corre~pon~ing field ot any
directory entry on the default or auto-selected disk orive . . If the or
field contains an ASCII question mark, then the auto disk select
function is disabled, · the default disk is searched, with the . search
function returning any matched entry, allocated or free, bel onging to
any user number. 'fhis latter function is not normally used oy
aoplication orogra~s. out does allow complete flexioility . to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed .

function 18: Search for Next.

The Searcn Next function is similar to tne Searcn First
function , except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items matcn.

Function 19: Delete File.

The Delete File function removes files whicn match the fC8
addressed by DE . The filename and type may contain ambiguous
references (i.e., question marks in various positions), but t.he drive
select code cannot oe ambiguous, as in the Search and Searcn Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is ~roprietary to Digital Research.)

15

Function 22: Make File .

rhe , ake Fil e ooeration is identical to orevious versions of
CP/ M, ex ceo t t ha t byt e s2 is zeroed uoon entry to the 3D0S.

Func ti on 23 : Renru~e File .

The ~ctions of the file r e name functions are the same as
pr ev i ous r e l eases exceot that the value 255 is returned if the rename
functio n i s unsuccessful (the file to rena:ne could not be found),
ot ne rwise a value in the range 0 to 3 is returneo.

Func ti on 24: Return Login Vector.

rne login vector value returned by CP/ M 2.~ is a 16 - bit valu7 in
rlL, wne r e t he least significant bit of L corresponds to the first
d r ive A, and the nigh order bit of H corres90nds to the sixteenth
j r i ve, laoe lleo P. Note that com?atibility is maintained with earlier
r e l ease5, s ince registers A and L contain the same values upon return.

f unc ti on 28: write Protect Current Disk .

r~ e d i s K write orotect function provides temoorary write
or o t ection fo r the currentl y selected disk. Any attemot to write to
t ne disk, before the next cold or warm start ooeration produces the
me s sage

Bdos Err on d: R/ 0

func t ion 29 : Get R/ 0 Vector.

fu nc ti on 29 returns a bit vector in register oair HL wnich
i nd i cates d rives wnicn have the temoorary read/only oit set. Similar
t o f unc t i on 24, th e least significant oit corres90nds to drive A,
while the mos t significant bit corres po nds to drive I' . ·rhe R/ 0 bit is
set ei the r by an exolicit call t o function 28, or by the auto:natic
so f tw a r e mech anisms witnin CP / M whicn detect changed disks.

Func ti on 3J: Set fil e Attributes .

Tne Se t File Attributes function allows programmatic
manipul a ti on of permane nt indicators attached to files. In
part i cu l a r , t he R/0 and System attribute s (tl ' and t2' above) can be
se t or r ese t. The DE pair addres ses an unamoiguous file name with the
aopr op r ia t e a ttri bute s set or reset . function 30 searches for a

(A ll I nformat i on Contained Herein is Proprietary to Digital Research.)

16

•·

:natcn and changes the matched directory entry to contain the selecteci
inoic~tors. Indicators fl' ~hrouqh £4' are ~ot oresently us~d, budt
may be useful for applications orograms, since tney are not involve
in the matching orocess durin, file ooen and clos e ooerat1 ons.
Indicators t5' tnrouqh fo ' and t3 ' ace re s erved for futur e s ystem
exoansion.

Function Jl: Get UisK Paramet e r Block Addr ess .

rhe address ot tne BIOS resident disk oarameter block i s
returned in HL as a result ot tnis function call . fhis address can be
used tor either of two purooses. First, the disk oarameter value s _can
oe extracteo for display ano soace computation ourposes, or transient
programs can dynamically change the values of current disk oara:net e r s
when the disk environment changes, if required . Normally, aool ication
orograms will not require thi5 facility .

Function 32: Set or Get User Code.

An aoolication orogram can change or interrogate the currently
active user number oy calling function 32. If register E = FF
nexJa ecimal tnen tne value of the current user number is returned in
register A, 'where the value is in the range J to 31. If register Eis
not FF, then the current user number is chanqed to the value of E
(:nodulo J2).

Function JJ: Read Random.

rhe Heao Random function is similar to the sequential file r e 3d
operation of orevious releases, except that the read ooerati on tak e s
olace at a ~articular record numoer, selected by the 24-bit valu e
constructed · from the three oyte fielo following the FCB (oyte
oositions r0 at 33, rl at 34, ana r2 at 35). Note that the sequence
of 24 oits is s torej with least significant ayte first (nil, :ni ddle
oyte next (rl), and high byte last (r2). CP/M release 2.~ does not
reference byte r2, except in computing the size of a file (function
35). nyt e r2 mu s t oe zero, however, since a non-zero value indicates
overflow past the end of file.

·rhus, in version 2.il , the ril,rl byte Pair is treated as a
double-byte, or "word " value, which contains the record to read. This
value ranges from ~ to 65535, proviaing access to any particular
record of the d megabyte file. In order to orocess a f ile us ing
random access , the base extent (extent u) mu s t first oe opened.
Altnough the oase extent may or may not contain any allocated data,
this ensures tnat the file is properly recorded in the directory, and
is visible in DIR reauests. The selected record number is then stored
into the random record field (rJ,rl), and the BDOS is called to read
tne record . Uoon return from the call, register A either contains an

(All Information Contained rierein is Proprietary to uigital Research.)

17

e rr o r code , as listed below , or the value 30 indicating the ooeration
wa s successful . In the latter case , the current DMA address contains
tne randomly _accessed record . Note that contrary to the sequential
r ea~ operation , tne recor~ number is not advanced. rnus, subsequent
ranaom r e ao operations continue to read the same record.

Upo n each random read 09eration, the logical extent and current
r eco r d values are auto:natically set. Thus , the tile can be
seq ue nti a lly read or written , starting from tne current randomly
a ccesse d oosition. Note , however , that in this case, the last
rand omly read record will be re-reao as you switch from random made to
s eque ntial reao , and the last record will be re-written as you switch
to a se~uential write operation. You can, of course , simply advance
t he random record oosition following eacn random read or write to
ootain the effect of a sequential I/0 o~eration.

Error codes returned in register A following a random read are
listed below .

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
0$ (not returnea in rea<.J mode)
aG seek past ohysical end of disK

t: rr o r c oc.e ~1 anci .i4 occur wnen a random reaa operation accesses a
data o locK wnicn has not oeen previously written, or an extent which
nas not been created , which are equivalent conaitions . Error 3 does
not no rmally occur under proper system operation, out can be cleared
by simply re- reading , or re-opening extent zero as long as the disk is
not phy s ically write orotected . Error code 06 occurs whenever byte r2
is non-zero under the current 2 . ~ release. Normally, non-zero return
codes can oe treated as missing data, with zero return codes
indicatinq ooeration comolete .

function 34: Write Random .

The write Random ooeration is initiated similar to the Read
Ran dom call , except that data is written to the disk from the current
DM A address . further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
perfo rmed oefore the write operation continues . As in . the Read Random
ooerati on, the random record number is not changed as a result of the
w~it e. The logical . extent number and current record positions af the
file control olock are set to corresoond to the random record which is
oeing written . Again , sequential · read or write operations can
com,11ence following a random write, with the notation that the
currently addressed record is eitner read ar rewritten again as the
s equential operation begins . You can also simply advance the random
record oosition following each write ta get the effect of a sequential
write ooeration. Note that in oarticular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is ~raprietary to Digital Research.)

18

•
~witch as it does in sequential mode under either CP/M 1.4 or CP/~
2. ll.

fhe error codes returned
random read ooeration with
indicates that a new extent
aver fl ow .

by a random write are identical to the
the addition of error code JS, wn1ch
cannot be created due to directory

function 35: Compute Pile Size.

when comouting the size of a file, the DE reqister oair
addresses an FCB in random mode format (bytes r0 , rl , and r2 are
present). The FCB contains an unambiguous file name wnicn is used in
the directory scan . Upon return , the random record bytes contain the
•virtual " file size which is, in eftect, the record address of the
record following the end of the file. it, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536 in version 2.0 . Otherwise, bytes r~ and rl
constitute a 16-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be apoended to the end of an existing file by simoly
calling function 35 to set the random record position to the end of
file, tnen oertorminq a sequence of random writes starting at the
pres e t record address .

·rne virtual size of a file corresponds to the physical size when
the til e is written sequentially. If, instead, the file was created
in random mode and "holes ·' exist in the allocation, then the file may
in fact contain fewer records than the size indicates . If, for
example, only the last record of an eight megabyte file is written in
random :node (i.e. , record number 65535), then the virtual size is
65536 records, although only one block of data i's actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the BOOS ta automatically
produce the random record position from a file which nas been read or
written sequentially to a particular point . The function can be
useful in two ways.

first , it is often necessary to initially read and scan a
sequential file to extract the positions of various "key " fields . As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this Key . If the data
unit size is 128 bytes, the resulting record oosition is olaced into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
oosition along with the key and record number in order to find the
e xact starting position of the keyed aata at a later time.

A s econd use of function 36 occurs when switching from a
seq ue ntial r e ad or write over to random read or write. A file is
seque ntially accessea to a oarticular ooint in the file , function 36
i s callea whi cn s e ts the record number , and subsequent random read and
write ooerations continue from the selected ooint in the file.

This section is concluded with a rather extensive, but comolete
e xamole of random access operation. The oroqram listed below performs
the simole function ot reading or writing random records upon command
tr om the terminal. Given that the program has been created,
assembled , and placed into a file labelled RAL.00,~.Clli-1, the CCI? level
com mand:

RANDOM X.DAT

s tart s the test oroqram. The program looks for a file by tne name
X.DA r (in this oarticular case) and , if found, oroceeds to oromot the
console for inout. If not founa, the file is · created before the
promot is given. Each promot takes the form

next commana?

and is followed by operator in?ut, terminated by
Tne input commands take the form

n..i nR Q

a carriage return.

wnere n is an integer value in the range 0 to 65535, and~. R, and Q
ar e simole command characters corresl)()nding to random write, random
r ead , an~ qui t processin; , resaectively. If thew command is issued,
tne RAN DOM program issues tne orompt

type data:

Th e ooerator tnen responds by typing up to 127 characters, followed by
a carriage re t urn. RANDOM then writes the cnaracter string into the
X. DAT f ile at record n. If the R command is issued, RANDOM reads
r eco rd numbe r n and disolays the string value a t the console. It the
Q comman d is i ssued, the X.DAT file is closed, and the proqram returns
t o t he console command orocessor. In the interest of brevity (ok, so
t he or ogram ' s not so brief), the only error message is

error, try again

·rh e !J rogram begins with an initialization section where the
input f il e i s ooeneo or createo, followed by a continuous loop at the
l a oel " reaay • where the individual commands are interoreted. The
de fault file control block at ~05Cd and the default buffer at ~080H
a r e us ed in all disk operations. ·rhe utility subroutines then follow,

(All Information Contained Herein is Proorietary to Digital Research.)

20

-
whi cn contain the orincioal inout line processor,
rhis oarticular program shows the elements of
processing, and can be used as the basis for
develooment ,

called · readc."
random access
further orogram

ii 01l l
.J002
iHhl9
J00a
J,H1c
~llOf
rl,HO
0016
Jd2l
JJ22

dl'.ISc
,liJ 7d
~il7f
0~lltl

r,Jl00 3lbc0

lill03 0e0c
illaS cd050
Jhltl fe20
liliia d216f.i

~Hid 11 lbil
tllHl cddail
<llll c3000

••
' . . .
;. samole random access oroqram for co/m 2.~ *

* . * :•.............•......•.....•...................
' org l~~h ;base of toa
i

;system reboot reboot eau 0000h
odos eau 00115h ; odos entry point

conin;> equ l ;console inout function
conout equ 2 ;console outout function
ostring equ 9 ;print string until '$'

rstr ing equ lll ; read console ouffer
version egu 12 ; return version number
openf equ 15 ;file open function
closef egu 16 ;close function
makef equ 22 ;make file function
r~a.:J r equ 33 ;read rando:n
writ e r eau 34 ;write random

fco egu IJJSch ;detault file control block
ranrec egu fcb+ 3 3 ;random record oosition
ranovf eau fco+3 5 ; high order (overflow) byte
ouf f equ ~080h ;buffer address

er equ 0dn ; carriage return
lf equ 0ah ; line feed

'
;••··· ..
;. load SP, set-uo file for random access

*
*
* ; *

;••···

versok:

lxi so.stack

version 2.0?
mvi
call
cpi
jnc
baa
l xi
call
jmo

c,version
bdos
20h ;version 2.0 or better?
ve r sok

version, message and go back
d,badver
or int
reboot

correct version for random access

(All Information Contained Herein is Proorietary to Digital Research.)

21

Jllb ll etlf
,illo l l 5c 0
li ll o cd05 1l
Il l le Jc
,ll lf c2 3 7d

d l 22 Jel o
il 12 4 ll Sc ll
,H 27 CUl!5 1ii
ll l 2a 3c
il l 2o c2371l

.ll 2e ll)all
0 131 ccida0
ll 13 4 c30.lil

d 13 7 cciej lJ
013a 22"/dll
ill 3d 217f<l
1114.1 3 6011
J 142 f e5 l
Jl44 c2 S6J

Jl47 li eld
014 9 l l 5c~
kll4c cd0~fl
014f Jc
,ll51l cab90
0153 c3000

0156 fe5 7
0 158 c2i190

ll l 5b 114d0
J l 5e cdda0

mv i c , ooenf ;O0en default fcb
lxi d , fcb
call bdos
inr a ; e rr 255 oecome s zero
jnz r eaay

cannot open file, so c reate it
mvi c,makef
l xi d, fcb
call odos
inr a ;err 255 becomes zero
jnz ready

cannot create file, directory full
lxi d,nospace
call or int
jmo reboot ;back to cco

;***
; . *
; * looo back to " ready " after each command
; * *
;*******••··
ready:

file is ready for orocessing

call read com ; read next command
snld ranre c ;store input recordt
lxi n, ranovf
mvi m,0 ;clear high byte if set
cpi ' Q ' ;quit?
jnz notq

qui t processing , close file
mvi c , closef
lxi ci, fco
call bdos
inr a ;err 255 becomes 0
jz error ;error message , retry
jmo reboot ; back to ccp

' ;***
* • ; *

;* end o f quit command , orocess write
;• .
;************ ***************************************

notq:
not the qu it command, random write?
cpi ' W'
jnz notw

this is a random write, fill buffer until er
lxi d , datmsg
call print ;data prompt

(All Information contained Herein is Proprietary to Digital Research.)

22

,Jl61 Je7f
11 163 2ld00

dl6b cs
.l 16 7 es
lll6 8 cdc20
,lloo el
lll6c cl
li l6d fe"d
.llof c a 78i:l

0172 77
t:1173 23
ll 174 lld
11175 c 26 61'.l

lll7d 361l0

017a lle22
.l l 7c ll 5cii
01 7f cd0 50
0 ld 2 b 7
illtl3 c2 b'J~
dlo b cJ37cl

0ld9 feS2
kll db c2b90

018e 0e21
,} 19~ 115clil
013 3 cd050
0196 b7
019 7 c2b~il

019a cdcf0
01':l<l tleil<l
019£ 2ldlil0

Ua 2 7e
1Ha3 23
0la4 e67f
0la6 ca370
0 la::I cs
0laa es

r loop1

er loop :

mv i
l xi
1 read
ouan
ous h
call

c , 127 ;uo to 127 char ac ters
h,ouff ; destinat ion

next character t o bu ff
b ;save counter
h ;ne xt destination
getchr ;cnaracter to a
h ; r es tore counter
o ;restore next to fill
er ;end o f line?
er looo

pop
coo
coi
jz
not
mov
inx
ocr
jnz

end, store character
m, a
h
C
rloop

;next to fill
;counter goes down
;end ot oufter?

end of read loop , store J0
mvi m, ~

write the record to selected record number
mvi
lxi
call
ora
jnz
jmo

c,writer
d, tcb
bdos
a
error
ready

;error code zero?
; message if not
;for another record

;••···
; * * ;• end of writ e comma nd , orocess read
: * •

,··••********* notw:

wloop:

not a write command, read record?
coi
jnz

read
mvi
lxi
call
ora
jnz

read
call
mvi
lxi

mov
inx
ani
jz
pu sh
1:JUSh

'R'
error ;skip if not

random record
c,readr

was

d, fcb
bdos
a
error

;return code 00?

s uccessful, write to console
er lf ;new 1 ine
c,128 ;max 12d characters
h, buff ;next to get

a,m ;next cnaracter
h ;next to get
7fh ;mask parity
ready ;for another command
b ; save counter
h ; save next to get

if 00

(All Information Contained Herein is Proprietary to Digital Research.)

23

.Jla b fe2 J
,llaa d 4cdtl
Jl o el
ll lbl d
0102 tlo
lllbJ c2a2'1
Jloo c337 .i

0lb-J 115~0
Jloc cddal:I
;Jlot c3370

lllc2 lleJ l
J lc-1 cd:351'.l
J lc 7 C'1

dlcd IJel'.!2
\ilea Sf
cl lco cdJ5tl
,H ee c ~

.J lcf 3e0d
~ldl cdcd.!
llld4 3e Ja
~ld& cctca.i
J l cH c9

Uld3 d5
0 ldo cdcrn
ll lde dl
,Hof Oel:J9
Jl e l cd050
ille4 c9

cpi ;graphic?
enc putcnr ;skip output if not
oop h
pop D

dee C ;count=count-1
jnz wloop
jmp ready

;* e nd o f r ead command , al l errors end-uo he re .. •
i· ·····••*************•********•********************

e rr or :
lxi
call
jmo

d,errmsg
or int
readv

;***
; * *

• ;: utility subroutines fo r console i / o

;•••••••••••••• .. •****************r******************

qetchr:

outcn r :

Cr lf:

or int :

readcom :

;r e ad ne xt console characte r to a
iTlVl

call
ret

c,conino
odos ·

;writ e character fr o~ a t o co nsol e
c, conout mv i

mov
call
ret

e, a ; ch aracter t o seno
ocios ;se nd cnaracte r

;s end car riaJ e r e turn lin e t eeo
mvi a,cr ; car riage return
call pu tcnr
mvi a,lf ; line feed
call 9u tcnr
r et

;or int t he buf fer addressed by de
oush d
call e r lf
000 d ;n ew line
iil Vi c,ost ring
ca ll bcios ;or int th e str ing
r et

until $

(All Info rmati on Con tained Herein i s Proorietary t o Dig it al Re s earcn .)

24

tJ le5 ll6bJ
0led cddal:J
0 leb ileila
tiled l l 7al'.!
0ltil cd05f.J

,llf3 2Hl<}0
0lf6 ll 7c0
1Hf~ la reacic:
.Hfa 13
l<}lfb b 7
tlHc c8

1:Jlfd d631l
I! lt t te0a
<I 201 d213il

0204 29
tl 2~5 4d
02~6 44
0207 29
020d 29
0209 09
0 2tla 8 5
d 2tHJ 0[

il 2~c d2t~hl
J 2Jt 24
d2ld c3f 'Hl

; read
l xi
call

the next command line to tne conbuf
cl, orompt

mvi
lxi
call
command
lxi
lxi
ldax
inx
ora
rz

or int ;command?
c, rs tr ing
d,conbuf
bdos ;read command line
line is oresent, scan it
h,0 ;start with 0300
d,conlin;command line
d ;next command cnaracter
d ;to next command oosition
a ;cannot oe end of command

not zero, nu~eric?
sui '0'
coi l~ ;carry if numeric
jnc ended
add-in next digit
dad h ; •2
mov C' l
!!IOV b,h ;DC value * 2
dad h ;*4
dad h ;*8
dad D ;•2 + *8 • lil

add 1 ;+digit
'TIOV l,a
jnc readc ;for another char
inc h ; ave rflow
j ITT? readc ; for another char

encird:
end of reaa, restore value in a

0213 c63<1
0215 febl
J 21 7 dtl

0 2 ld e65f
U 21a C':I

d 210 ~>36f7~

0 2Ja 4e6f2'l

~ 24d 54 H7'/J

il 259 457272

~26o 4e6570

adi
coi

I~ I

'a'
;command
;translate case?

re
lower case , mask lower case bits
3ni 101$11110
ret

,

;••···
; * *
;• string data area for console messages •
i * -

:••···
oadver:

db ' sorry, you need c:>/m version 2S'

nosoace :
do 'no directory spaces ·

dat~sg:
db ' type data: $'

er rmsg :
db 'error , try again.$'

oromot:
db ' next command? $'

,,11 Infor~ation Con tained Herein is Proprietary to Digital Researcn.)

25

027a 21
U2 7b
~ 27c
J d2l

J H c

J 2oc

;••··· : .
* :• fi xe d and variable data area

: . *
;••·· · ···••************************************••···
conbuf : db conlen ;len~th of console buffer
c ons iz : ds l ;resulting size a f t e r read
c o nlin : ds 32 ; length 32 buffer
c onlen equ S-consiz

ds 32 ; 16 level stack
stack :

end

(All Intormation Contained Herein is Propr ie tary to Digital Rese a r cn .)

26

•

~. CP/M 2 , 0 MEMORt ORGMIZATION.

S i milar to earlie r versions,
va ri ous memory sizes, deoending u9on

CP/M 2 . 11 i s field-altered t o fit
the hos t comoute r me mo ry

popular memory size s ar e
configuration . Typical base addresses for
s hown in the taol e be low .

Module 2ilk 24k 32 k 4Bk 64 k

CCP 34 0.,J H 44 00H 64 0rJ H A400H E40 0H

BDOS 3COklH 4C 0ilH 6C00tl AC;l;lH EC0 0H

BIOS 4A0 i<JH 5A0ilH 7A00H BA00H FA0 aH

-rop of Ram 4FFFH 5FFFH 7Ffftl SFffH FFf fH

The oistribution disk contains a CP/M 2.0 system confiqured fo r a
Intel MDS -80 0 with standard IoM a" floppy disk drives . Th e

layout is shown below:

sec tor ·rr ack il0 Module rrack ,l l Module

l (Boot s trap Loader) 408ilH BOOS + 480 H

2 34 01!H CCP + 001:lH 4Ul!H BOOS + 500H

3 348\ltl CCP + Ot!ilH 418 0H BOOS + 580H

4 J5J 0H CCP + 100H 42<i0H '3D0S + 600tl

5 358~H CCP + 18.JH 42ddH SOOS + 680ii

6 36 011H CCP + 2,HtH 430tiH BOOS + 70 ilH

7 36tH:IH CCP + 280 H 43 8,Hl BOOS + 780H

<l 3 /thlli CCP + 30,lll 441htll i3D OS + &00tl

'-J 3 7&il tl CCP + 38,ltl 448\ltl BDOS + tH!ilH

l~ 381Hl tl CCP + 4cl 0H 45 ihJH BOOS + 900H

11 3cld~H CCP + 4rHlH 4 580H !300S + 98.Jtl

12 39~~H CCP + 500H 46~"'H BOOS + A00H

13 39cl~H CCP + 580H 4680H BDOS + Atl0H

14 3A00H CCP + 600H 470i<JH BOOS+ 800H

15 3A80H CCP + 680H 4780H BOOS+ Bd0H

16 3Bi<l0H CCP + 700il 480klH SOOS + C00H

17 3Bd0H CCP + 780H 4880H BOOS + C80H

ltl 3Cil0H BOOS + 000H 4900H BDOS + 000H

19 3C80H BOOS + 080H 4980H BOOS + 080tl

20 3000H BOOS + l 0i!H 4A00H BIOS + kl0kltl

21 3D80H BOOS + ld0H 4Al:l0H BIOS + 080H

22 3E00H BOOS + 21HlH 4B00H BIOS+ 100H

23 3E80H BOOS + 280H 4B80H BIOS + 180H

24 3F00H BOOS + 300H 4C00H BIOS + 200H

25 3Ftl0H BOOS + 380H 4C80H aros + 280H

26 4000H BOOS + 400H 4D00H BIOS+ 300H

2Jk
di s k

In particular , note that the CCP is at the same position on the disk,
and . oc cupies the same space as version 1 . 4. The BOOS portion ,
however, occupies one more 256 - byte oage and the BIOS portion · extends
through the remainder of track 01. Thus, the CCP is tll!0H (2048
decimal) bytes in length, the BOOS is E00H (35&4 decimal) bytes in
length , and the BIOS is up to 380H (898 decimal) bytes in length . In
ver s ion 2.l<l, the DIOS portion contains the standard subroutines of
1.4 , along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

H I , !H U :> iJ H.t' l::RENCES .

'I'he CP/ M 2. 0 Basic I/0 s
from its oredecesssors . Two n~!tem differs only slightly in concept
a new sector translation subr~u~? vector entry points are defined
characterist i cs table must be u ine is included, and a di·sk'
cnang f defined . ·rhe k l l es are ound in the program shown below . s e eta form of these

l :
2 :
3:
4:
5 :
6:
7 :
d :
9:

hl:
11:
12:
13:
14:
15:
16:

bpo
r po
maxb

17: coot:
ld:

org
maclio
jmp

jmp

4000h
d iskdef
boot

li stst ;list status
sectran ;sector translate
4

jmp
disks
large
equ
equ

capacity drive

equ
dis kde f
diskdef
di skdef
diskdef

ret

16 •1024 ;bytes per block
?Pb/128 ;records per block
0553 5/ rpo ;max block number
0 ,l , 58,J , bpb , maxb+l , 128 , 0 , 2
l , l , 5B, ,bpb , maxb+l 128 O 2
2 , 0 ' ' '
3 , 1

;nop

B: listst :
21l :

xra
ret

a ;nop
21:
22: seldsk:
23 : ;drive number inc
24:
25:
26 :
27:
2a:
2~:
3i) :

31:
3 2 :
33 :
34 :
3 5:
3 6 :
37 :
38: selsec:
39 :
4 ,J:
41 :
4 2:
43 :
44: sect r an :
45:
46 :
4 7 :

lxi h,0 ,. 0~0,,
v ~ i~ hl produces select error mov

cpi
rnc
oroper
mov
dad
dad
daa
dad
lxi
dad
ret

a,c ;a is disk numoer 0 ••• ndisks-l
nd isks ;less than ndisks?

disk
l , c

. ;return with HL = 0~,l0 if not
numoer , return dpb element address

h ; •2
h ; •4
h ; *8
h ;•16
d , dpbase
d ;HL= ,dpb

;s ec tor number inc
lxi h,sector
mov
ret

m,c

;translate sector BC using table at DE
xchg ;HL = .tran
dad b ;singl e precision tran

(All Info rmation Contained Herein is p .
ropr1etary to Digital Research ,)

28

• •

'

48 : dad b again it double precision tran
49 : mov l , m ;only low byte necessary here
5,l: fill botn H and L if double precision tran
'>l: r e t ;HL = ??ss
5 2:
5 3: sector : ds l
54: endef
55 : end

Referring to the program shown above, lines 3- 6 reoresent the
eros e ntry vector of 17 elements (version 1.4 defines only 15 j umo
vector elements) . 'rhe last two e lements provide access to the
"LIS·rs•r" (List status) entry point for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different tn an tne orevious 1.4 release . It should be noted that
tne 1 . 4 DESPOOL oroqram will not operate under version 2. 0, out an
u:xiate version will be availaole from Digital Research in th e near
future.

·rhe "SECTRAN " (Sector Number ·rranslate) entry shown in the jump
vector at line 6 provides access to a 810S-resident sector translation
suoroutine. This mechanism allow s the user to specify the sector skew
factor and translation for a oarticular disk system, and is described
below.

A macro liorary is shown in the listing, called DISKOEF ,
included on line 2, and referenced in 12-15. Although it is not
necessary to use tne macro liorary, it greatly simplifies tne disk
detinition process. Vou must have access to the MAC macro assembler ,
of course, to use the OISKDEF facility, while the macro library is
i ncluaed with all CP/M 2.0 distribution disks. (See the CP/M 2,0
Alteration Guide for formulas whicn you can use to hand-code the
taoles produced oy tne DISKDEF library) .

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISK DEF

DISKS n
DISKOEF 0, ...
DISK DEF 1, ...

9ISKDEF n-1

ENDE:F

where the MACLIB statement loads the DISKDEF.LIB file (on the same
di sk as your iHOS) into MAC' s internal tables. ·rhe DISKS macro call
follows, whi ch specifies the number of drives to be configured with
vour s ystem, where n is an integer in the range l to 16 . A series of
OISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n- 1 (corresponding to logical drives A
through Pl. Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

2~

fixed data tables , and tnus must oe placed in a non-executable oo rti c n
o(you r BIOS , t ypically directly tollowing the BIOS jum9 vector .

The rema ining po rtion
DISKD£F macros , with the
EIW sta tement , Tne ENDEF
necessa ry uninitialized RAM

~f your BIOS is defined following th e
ENDEF macro call immediately preceding th e

(End o~ Diskdef) macro generates th e
areas which are located above your BIOS.

wnere

Tne form of tne OISKDEF macro call is

dn
f SC

lsc
skf
ols
di r
cks
ots
10 I

DISK DEF dn,fsc , lsc , [skf] , bls , dks , dir , cks , ofs , [0)

is the logical disk number , 0 to n- 1
is the first physical sector number (0 or 1)
is the last sector number
is the optional sector skew factor
is the data allocation block size
is the number of directory entries
is the number of " checked " directory entries
is tne track offset to logical track 00
is an 09tional 1.4 compatibility flag

The valu e "dn" is the drive number being defined with this DISKDEF
macro invocatio n. Tne " fsc " parameter accounts for dif~ering sector
numoering systems , and is usually 0 or 1. The "lsc " 1s the last
numoered sec tor on a track . When present , the "skf " parameter defines
tne sector skew factor which is used to create a sector translation
taole according to the skew , If the number of sectors is less than
256 , a single-byte table is created, otherwise each translation table
element occur;>ies two bytes. l~o translation table is created if the
sk f Parameter is omitted (or equal to 0). The "bls " oarameter
specifies the number of bytes allocated to each data block, and take s
on t he values 102 4, 2048 , 4096 , 8192, or 16384 , Generally,
performa nce increases with larger data block sizes since there are
few e r directory references and logically connected data records are
physically close on the disk. Further , each directory entry addr esses
more da ta and t~e BIOS-resident ram space is reduced, The "dks "
specifies tne total disk size in "bls " units. That is, if the bls
204 8 and dks = 1000 , tnen tne total disk capacity is 2, 048, ~00 by tes .
If dks is greater than 255, then tne block size parameter bls must be
g r eate r t han 1024 . The value of "dir " is the total number of
di r ectory entries which ma y exceed 255 , if desired, The "c Ks "
parameter determines the number of directory items to c heck on each
di r ecto ry scan , and is used internally to detect changed disks during
sys t em operation, where an intervening cold or warm start has not
occurred (when this situation is detected , CP/M automatically marks
the disk read/o nly so that data is not subsequently de s troyed).
Normally the value of cks = dir when the media is easily changed, as
i s the case with a floppy disk subsystem. If the disk is perman en tly
mount ed , then the valu e of cks is typically 0, since the probability
of cna nging di sks without a restart is quite low . fhe "o fs " value
dete rmin es the number of tracks to skip when tnis particular driv e is
addressed , which can be used to reserve additional operating system

(All Intormation Contained Herein is Proprietary to Digital Research.)

30

•

• •

3 0 ace o r to simulate several logical drives on _a single large capac~ty
physical drive. Finally, the (0) parameter 1s included when file
comoatibility is required with versions of 1.4 which have been
modified for higher density disks. This oarameter ensures that only
16K i s allocated for each directory record , as was the case for
previous versions . Normally, this oarameter is not included,

For convenience and economy of table space, the special form

DISK DEF i, j

g ives disk i tne same characteristics as a previ~usly defined _~~ive · fh
A standard four - drive single density system, whic~ 1s co~r;>ati e wi
vers ion 1.4, is defined using the following macro 1nvocat1ons:

DISK S
DISKDEF
DISK DEF
DISKDEF
OISKDEF

EN DEF

4
0,l,26 , 6,1024,243,64 , 64,2
1 ,0
2. r}
3, I!

with all disKS having the same oarameter values of 26 sectors oe r
track. (numoereo l tnrough 26), with 6 sectors skipped between each
access 1024 oytes oer data olock, 243 data olocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

rhe definitions given in the program s hown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2 0 All disks have identical ~ar11111eeets, eice~t that drives 0 and 2
ski~ three sectors on every data access, while disks land 3 access
eacn sector in sequence as the disK revolves (there may, however, be a
transoar ent hardware skew factor on these drives).

The DISKS macro generates n "disk header olocKs, " starting _a t
address DPBASE which is a label generated by the macro. Each disk.
header block contains sixteen bytes, and correspond, in sequence , to
e ach of the defined drives. In the four drive standard system, for
exampl e, the DISKS macro generates a table of the form :

Oi'SASE EQU
OPEl1: OW
DPEl: Dw
DPE 2 : Ow
DPE3: OW

$
XLT0,0000H,0000H,0000H,OIRBUF,DP3~ , CSV0,ALV0
XLT0,0rJ00H,~000H,011rJ0H,OIRBUF,DPB0,CSVl,ALVl
XLT0,ij000H , 0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,OIRBUF,DPB0,CSV3,ALV3

wh e re the OPE (disk parameter entry) label$ are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk oarameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
aadress the translation vector for the drive (all reference XLT0,
whicn is the translation vector for drive 0 in the above example) ,

(All Into rmation Contained Herein is Proprietary to Digital Research.)

31

f1x ca da ta taoles , and tnus must oe olaced in a non-executa ble oorti cn
of your a1os, typically di rectly tollowing the DIOS jumo vec t or .

The remaining oo rtion
DISKDEF macros, witn the
Elm stateme nt . Tne ENDEF
~ecessary uninitiali zed RAM

of your BIOS is defined foll owing th e
END EF macro call immediately preceding the

(End of Diskdef) ma c ro generates the
a r eas which are located above your DIOS .

The f o rm of the OISKDEF macro call is

DISKDEF dn , fsc , lsc , [skf) , bls , dks , dir , cks , ofs , (01

wnere

dn is the logical disk numoer , U to n- 1
f SC is the tirst physical sector number (0 or l l
lsc is the last sector number
skf is the optional sector skew factor
ols is the data allocation block size
di r is the number of directory entries
cks is the number of "checked" directory entries
ots is tne track offset to logical track 00
10 I is an optional 1 . 4 compatibility flag

The valu e "dn" is the drive number being defined with this DISKDEF
mac r o invoca tion . ·rne " fsc " oarameter accounts for differing sector
nu moe ring s ys tems , and is usualiy 0 or 1. The " lsc " is the last
numbe red sector on a track . when present, the "skf " parameter defines
tne sector skew factor which is used to create a sector translation
taole according to the skew. If the numoer of sectors is less than
256, a single-byte table is created , otherwise each translation table
e leme nt oc cupies two bytes . No translation table is created if the
skf pa rameter is omitted (or equal to 0). The "bls'' parameter
s pecifies the number of bytes allocated to each data block, and takes
on the values 1024 , 2048, 4096 , 8192 , or 16384. Generally,
pe rfor mance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
phys ically close on the disk . Further , each directory entry addresses
mo r e data and t~e BIOS- resident ram space is reduced . The "dk s "
specifies th e total disk size in "bls " units. That is, if the bls
2048 and dks = 1000 , tnen the total disk capacity is 2,048,000 byte s.
If dks is greater than 255 , then the block size parameter bls must be
g reater than 1024 . The value of "dir " is the total number of
di rectory entries which may exceed 255, if desired. The "cks "
parameter determines the number of directory items to check on each
directory scan , and is used internally to detect changed disks during
system ope ration, where an intervening cold or warm start has not
occu rr ed (when this situation is detected, CP/M automatically marks
the disk read/ only so that data is not subsequently destroyed) .
No rmally the value of cks = dir when the media is easily changed , as
is th e case with a floppy disk subsystem . If the disk is permane ntly
mounted , then the value of cks is typically 0, since the probability
of cnangi ng disks without a restart is quite low . The "of s " value
determines the number of tracks to skip when this particular drive is
add ressed, which can be used to reserve additional operating system

(All Intormation Contained Herein is Proprietary to Digital Research .)

30

•

I

~oace or to simulate several logical drives on _a single large capacity
- I I included when tile
phys i cal drive. Finally, the 0 par~eter is 1 . 4 which have been
comoatibility is required with versions of that only
modi fied for higher density disks. This oarameter ensures case f or
16K is allocated for each directory rec?rd , as was th e
previous versions. Normally, this oarameter is not included.

for convenience and economy of table soace, the special for m

D13KDEf i. j

· · en· aracteristics as a previously defined drive j.
gives dis k 1 tne same • h · oati ble with
A standard four-drive single density system, whic _ is co~ .
version 1.4, is defined using the following macro invocations.

DISKS
DI SK DEF
DISK DEF
OISKDEf
DISK DEF

ENDEf

4
0,l,26,6,1024 , 243,64,64,2
1 , 0
2. ,l
3,"'

with a ll disKs having the same oarameter values
track (numoerea 1 tnrough 26) , with 6 sectors
access, 1024 oytes oer data clock, 243 data clocks
byte disk capacity, 64 checked directory entries,
system tracks.

of 26 sectors oer
skipped between each
for a total of 243k
and two operating

rhe definitions given in the program shown above (lines 12
through 15) provide access to the iargest disks addressable by CP/M
2.0 . All disks h~ve identical par4ffletefe, e~cept that drives 0 and 2
ski o three sectors on every data access, while disks land 3 access
ea c~ sec tor in sequence as the disK revolves _ (there may, however, be a
transoarent hardware skew factor on these drives).

The DISKS macro generates n "disk header clocks, " starting at
add ress ul'BASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives . In the four drive standard system, tor
e xampl e, the DISKS macro generates a table of the form:

DPBASE EQU
DPE0: DW
DPEl: Dl'I
DPE2: Dl'I
DPE3: Dl'I

$
XLT0,~000H,0000H,ll000H,DIRBUF,DP3~,CSV0,ALV0
XLT0,0~00H ,0 000H,01l~0H,DIRBUf , DPB0,CSVl,ALVl
XLT0,0 000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,~000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPE (disk parameter entry) label$ are included for reference
purposes to show the oeginning table addresses for each drive 0
through 3. The values contained within the disk parameter head~r are
described in detail in the CP/M 2.0 Alteration Guide, but basically
aad ress the translation vector for the drive (all reference XLT0,
which is the translation vector for drive 0 in the above example),

(A ll Information Contained Herein is Proprietary to Digital Research.)

31

r
fol l owed oy t n r ee 16-b it "scratch " addresses, followed by th e
d ir ec t o ry bu ff e r addr es s, d isk oarameter olock address, check vector
aouress, ano allocation vector aadress . The check ano allocation
vec t o r ada r esses are gene rated by the ENDEF macro in the ram area
following the BIOS coae and taoles.

The SELDSK function is extended somewhat in version 2.0. In
par ticular , the selected disk num be r is Passed to the BIOS in register
C, as oefore , and the SELDSK subroutine oerforms the appropriate
softwa re o r hardware actions to select the · disk . Version 2.0,
noweve r , also requires the SELDSK subroutine to return the address of
the selec ted disk parameter header (DPE0, DPEl, DPE2 , or DPEJ, in the
above exa mp le) in register riL. If SELDSK returns the value HL =
J0.JJH , tn e n the BOOS assume s the disk does :10t exist, and prints a
selec t erro r mesage at the terminal . Program lines 22 through 36 give
a samol e CP/ M 2.0 SELDSK subroutine, snowing only the disk parameter
heade r ad d ress calculation.

Tne suo r outine SEC1'RAN is also included in version 2.0 which
pe rr o rms tne actual logical t o physica l sector translation. In
earlier ve rsions of CP/ M, the sector translation process was a part ot
tne BOOS, and se t to skip six sec t ors between eacn read. Due
o iffering rotational soeeds of various disks, the translation function
has become a oa rt of the BI OS in version 2. ~. 'fhus, the BOOS sends
seque ntial se c tor nu moers to SECTRAN, starting at sector number 0.
rhe SECT RA ~ suor outine uses t he seq uential sector number to oroduce a
translatea secto r numoe r which is return ee to the DUOS. The BOOS
s uosea uentl v se nds the translated sector number to SELSEC before the
actuai r ead . o r write is oerfo rmed . Note that many controllers have
the ca pa oility to record the sector skew on the disk itself, and thus
t he r e i s no translati on necessa r y. In this case, the "skf " oarameter
is omitted in the mac ro call, and SEC'fRAN simoly returns · the same
val ue wh 1cn it re ce ives. ·rhe table shown below, for example, is
const ru c t ed when the s tandard skew factor skf = 6 is specified in the
DI SKDEF macro ca ll :

XLT0: DD
OB

l ,7, 13,19,25,5,11,17,23,3,9,15,21
2,8 ,14,20,26,6,12,18,24,4,10,16,22

If SECT RAN i s required to translate a sector, then the tallowing
or ocess cak e s place. Tne sector to translate is r ece ived in register
pa ir BC. Only tne C regi ster is significant if the secto r value does
no t e xc eed 255 (B = 00 in this case). Register pair OE addresses the
sec to r tr a ns late table for thi s drive, determined by a orevious call
on SE LDSK, cor r esoonding to th e first element of a disk parameter
neade r (XL-ri:l in the case snown above). Tne SECTRAN subroutine then
f e t ch es t he transl ated sec tor number by adding tn e input sector number
t o cne oase o f tne translate taole, to get the indexed translate tabl e
aad r ess (see lines 46, 47, and 48 in the above program). The valu e at
thi s location is then returned in register L. Note that it the numbe r
o t se ctors exceeds 255, the trans late table contains 16 - bit elements
wnose va l ue mus t be r e turned in HL .

Follow ing the ENDEF macro call, a number of uninitialized data
a r eas are defined. These data areas need not be a part ot th e BI OS

(A ll Information Co ntaineu He rein is Proprietary to Digital Research .)

32

•

•

wnich is loaded uoon cola start, but ~ust be av~ilable between t~e
3IOS anu the eno of memory. The size of the un1n1t1al1zed RAM area 15
determined by EQU statements generated by tne ENDEF macro . for a
standard four-drive system , tne ENDEF macro mignt oroduce

4C72

4DBil
ill3C

BEGOA·r EQU $
(data areas)

ENODA ·r EQU $
OA'!'SIZ EQU $-aEliDA'r

whicn indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB~H-l , ano occupies ~13C~ oytes. ~ou must ensure that these
addresses are free for use after tne system is loaded.

CP/M 2.~ is also easily adapated to disk subsystems
size is a multiple ot 128 bytes. Information is orov1oed
on sector write operations whicn eliminates the ne~d
operations, thus allowing clocking and deblock1ng to taKe
BIOS level.

whose sector
by the 8D05
for pre-read
place at the

see the "CP/M 2.~ Alteration Guide " for additional details
concerning tailoring your CP/M system to your 9articular nardware.

(~1 1 Inf orma tion Conta ined Herein is ~roprietarv to Diqital Research.)

33

\

,.

• I

\

•
..

