10] DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 INTERFACE GUIDE

Copyright (¢) 1979

DIGITAL RESEARCH

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted.

transceribed, stored in a retrieval svstem, or translated into
any language or computer language, in anv form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,

Caglifornia 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for anv parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notifv any person of such revision or changes.

CP/M 2 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction . « o« o o & % % & @ % & " & » & & 5

Operating System Call Conventions

A Sample File-to-File Copy Program
A Sample File Dump Utility « « « & « . .
A Sample Random Access Prodgram

System Function SUMMALY . + « =« « « « « o « + &

34

37

46

1. INTRODUCTION.

_ dTth Manual describes Ccp/M, release 2, system organization
}nclut;ng “the Structure of memory and system entry points, The
intent1lon 1s to provide the necessary information required to write

programs which Operate wunder Cp/M, and which use the peripheral and
disk I/0 facilities of tpe system./ ' a R

CP/M is logically divided into four parts, called the Basic 1/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
commanad processor (CCP), and the Transient Program Area (TPA). The
BIOS 1S a hardware-dependent module which defines the exact low level
lntgrface to a particular computer system which 1is necessary for
peripheral device 1/0, Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide") .
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i,e.,, the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
1s reserved for system information and is detailed later sections,
Memory organization of the CP/M system in shown below:

i ——————————————— - ——————

high | |

memory | I
| FDOS (BDOS+BIOS) |

FBASE: | |
I I

| ccp |

CBASE: | |
| I

| l

| I

| TPA I

| I

TBASE: | I
| system parameters |

BOOT: | ’

—— ————— ——————————— - ———————

resses corresponding to BOOT, TBASE, CBASEf and
gg:szxasgrgemggﬁmadsersion to version, and are Qescribed fully in the
“CP/M Alteration Guide." All standard CP/M versions, however, assume
BOOT = @@@@H, which is the base of random access memory." The machine
code found at location BOOT performs a system "warm start” which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

to return control to CP/M at the command level. Further, the stanc
Verslons assume TBASE = BOOT+@100H which is normally location g

The principal entry point to the FDOS 1is at location BOOT+gy¢
The address fielg

(normally 9005H) where a jump to FBASE is found.
BOOT+0U¥06H (normally 0@¥6H) contains the value of FBASE and car
used to determine the size of available memory, assuming the cCCp
being overlayed by a transient program,

Transient programs are loaded into the TPA ana executed
communicates with the CCP by typing comm

fqllows. The operator
lines following each prompt. Each command line takes one of
forms:

command

command filel
command filel fileZ

where "command" is either a built-in function such as DIR or TYPE,
tne name of a transient command or program. If the command is
built-in function of CP/M, it is executed immediately. Otherwise, t

CCP searches the currently addressed disk for a file by the name

command, COM

If the file is found, it is assumed to be a memory image of a progr
which executes 1n the TPA, and thus implicitly originates at TBASE
memory. The CCP loads the COM file from the disk into memory starti

at TBASE and possibly extending up to CBASE.,

If the command is followed by one or two file specification:
or two file control block (FCB) names in tt

the CCP prepares one
system parameter area, These optional FCB's are in the form necessar
to access files through the FDOS, and are described in the nex
section,

The transient program receives control from the CCP and begin
execution, perhaps wusing the I/0 facilities of the FDOS. Th
transient program is “called” from the CCP, and thus can simply retur
to the CCP upon completion of its processing, or can jump to BOOT ¢t

the transient progra

pass control back to CP/M. 1In the first case,
must not use memory above CBASE, while in the latter case, memory u

through FBASE-1 is free,

The transient program may use the CP/M I/0 facilities ¢t

communicate with the operator's console ana peripheral devices
The I/0 system 1s accessed by passing

including the disk subsystem,
"function number"” and an "information address” to CP/M through th
BOQT+0@@5H, In the case of a disk reaa, fo

FDOS entry point at
example, the transient program sends the number corresponding to
disk read, along with the address of an FCB to the CP/M FDOS. Th
FDOS, in turn, performs the operation and returns with either a dis
read completion indication or an error number indicating that the dis

read was unsuccessful. The function numbers and error indicators ar:

given in below,

(All Information Contained Herein is Proprietary to Digital Research.)

2

5. OPERATING SYSTEM CALL CONVENTIONS

ei?grggipogg of this Section is to provide detailed information
g ph fu %' lrect.°perat1n9 system calls from user programs. Many
o th netions listed below, however, are more simply accessea
th?ou?n t : I(O i l?brary pProvided with the MAC macro assembler,
and 1S ?a 1n the Digital Research manual entitled "“MAC Macro
Assembler: Language Manual and Applications Guide. "

M Cy , . |

: ragg/lfg?ill;tées which are available for access by transient
pt E file I/0 s _two general categories: simple device I/C, ana
d1s -+ The simple Qevice operations include:

Rego a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Seguential Tape Character
Write a List Device Character
Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Oven

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplisned
by passing a function numpber and information address through the
Primary entry point at location BOOT+0805H., In general, the function
number is passed in register C with the information aadress 1in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value 1s returned when
the function number is out of range). For reasons of compatibility,

fegister A = L and register B = H upon return in all cases. Note that

the register passing conventions of CP/M agree with those of 1Intel's
PL/M systems programming language. The list of CP/M function numbers

1S given below.

(A1l Information Contained Herein is Proprietary to Digital Research.)

3

@ System Reset 19 Delete File

1 Console Input 20 Read Seguential

2 Console OQutput 21 Write Segquential

3 Reader Input 22 Make File

4 Punch OQutput 23 Rename File

5 List Output 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk
7 Get I/0 Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
1@ Read Console Buffer 29 Get R/O Vector

11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random

15 Open File 34 Write Random

16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location ©@@¥H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a 1local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at whicn time control returns to the
CCP (assuming a standard CP/M system with BOOT = @000H):

BDOS EQU 0095H ; STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG ¥160H ;BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ; RETURN CHARACTER IN <A>
CPI R ; END OF PROCESSING?
JINZ NEXTC ;LOOP IF NOT
RET sRETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
Characters, and the file type consisting of zero to three non-blank
Characters, The file type names the generic category of a particular
file, while the file name distinguishes 1individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

.

® System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console Output 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk
7 Get I/0 Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
19 Read Console Buffer 29 Get R/0 Vector

11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random

15 Open File 34 Write Random

16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location GQ@0H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = B@00H) :

BDOS EQU 80054 ; STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG v100H ;BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN <A>
CPI o ;END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ;RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area, The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes 1individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup

INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$$ Temporary File

source files are treated as a sequence of ASCII characters, whgre each
"line" of the source file is followed by a carriage-return line-feed
sequence (@DH followed by BAH). Thus one 128 byte CP/M record cou}d
contain several lines of source text., The end of an ASCII file is
denoted by a control-2 character (1AH) or a real end of file, returned
by the CP/M read operation. Control-% characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is wused to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from @ through 65535, thus
allowing a maximum of 8 megabytes per file, Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decamposition into extents is discussed in the paragraphs which
follow, they are of no particular conseguence to the programmer since
each extent is automatically accessed in both seguential and random
access modes,

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+8@85CH (normally @85CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+0@80H (normally @H86H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required,

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file is accessed randomly. The default file control block
normally located at @05CH can be used for random access files, since
the three bytes starting at BOOT+@@7DH are available for this purpose.
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research.)
5

00 91 @2 ... @8 99 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (8 - 16)
@ => use default drive for file

1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

£l -£8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = @
tl', t2', and t3' denote the
bit of these positions,

tl' = 1 => Read/Only file,
t2' =1 => SYS file, no DIR list
ex contains the current extent number,

normally set to @8 by the user, but
in range @ - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

b o) record count for extent “ex,"
takes on values from # - 128

d@...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

rd,rl,r2 optional random record number in the
range #-65535, with overflow to r2,
r@,rl constitute a 16-bit value with
low byte r@, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subseguent file operations. When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(A1l Information Contained Herein is Proprietary to Digital Research.)

6

FCB's are stored in a directory area of the disk, ana are

ought into central memor before proceeding with file operations
Drods < 24 e copy of the FCB 1s

(see the OPEN and MAKE functions). The memory X 1
updated as file operations take place and later recorded permanently
on disk at the termination of the file (see the CLOSE

command) .

operation

The CCP constructs the first sixteen bytes of two optxon;l FCB's
for a transient by scanning the remainder of the line' following the
transient name, denoted by “filel" and “filez"” in the prototype
command line described above, with unspecified fields set to ASCII
planks. The first FCB is constructed at location BOOT+¥®5CH, and can
be used as-is for subsequent file operations. The seconud FCB occupies
the d¢ ... dn portion of the first FCB, and must be moved to another
area of memory before use, If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+005CH is initialized to drive code 2, file name "X" ana file type
"Z0T". The second drive code takes the default value 8, which is
placed at BOOT+@P6CH, with the file name "Y" placed 1into location
BOOT+606DH and file type “ZAP" located 8 bytes later at BOOT+6075d.
All remaining fields through "cr"” are set to zero. Note again that it
is the programmer's responsibility to move thnis second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOCT+@@5CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+0@5DH and BOOT+@6@6DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+#9¥80H is initialized to the commana 1line tail typea by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0p86H is initializea as follows:

BOOT+0080H :
+00 +01 +62 +03 +0V4 +U5 +06 +07 +08 +99 +10 +11 +12 +13 +14
14 ™ % mBY g wgM W W Mg owQu o wQe omow omyn o w wowgh owpl wpw

where the characters are translated to wupper case ASCII with
uninitialized memory following the last valid character. Again, it is

thg responsibility of the programmer to extract the information from
this opuffer before any file operations are performed, unless the

default DMA address is explicitly changed.

The individual functions are described in detail 1in the pages
which follow.

(All Information Contained Herein is Proprietary to Digital Research,)
7

KA AN K ARAARANRRRARNRANARANNAARAAARANR R AR A, hk
* *
* FUNCTION ¥: System Reset *
- *
KA RAKRAKRAKRANAR KRR AR R AR R AR AR AR AR ARk ok ok ok oh ok
* Entry Parameters: *
* Register C: @0H *

AAKAKA AR RARARA KRR AR RRAAAARKR AR A AR ARk kok k&

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

LR R R R s RS S

* *
* FUNCTION 1: CONSOLE INPUT *
* *

ARKKAKRKRR AR KA A AR AN AR A N AR A A Ak hokkok ok ko

* Entry Parameters: *
Register C: ©@1lH

Register A: ASCII Character

*
*
*
*
IR RS R R R R RS RS RSS2SR SRR RSS2 R R S

*
*
* Returned Value:
*
*

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

LR R R R R R R
* *

* FUNCTION 2: CONSOLE OUTPUT B

* *
ERKKAARA AR KA AR AR ARNARAARRA KRR KRR AN ANk ok okk
* Entry Parameters: ®
* Register C: ©2H ¥
% Register E: ASCII Character *
* *
AEXKKA AR KKK AR AR I A AR A A AKX A AR A kA AR KRR XA KK Kk

The ASCII character from register E 1is sent to the console
device, Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

KK RAR KR A R AR RA KRR AKARK AR AR KRR ARANK R AR AR K
*

*
*

*

* FUNCTION 3: READER INPUT
*
*ﬁﬁ**iﬁﬁit****ﬁ*t***ﬁ**ﬁ*ﬁ*t**kt*t**ﬁ*i
* Entry Parameters: :
Register C: @3H B
*

Register A: ASCII Character *
it*ﬁ***ﬁt***ﬁ**ﬁﬁtﬂ**********ﬁt**ﬁ*ﬁt*

*
*
* Returned Value:
*
*

The Reader Input function reads the next character from" the
logical reader into register A (see the IOBYTE def§n1t1on in the "CP/M
Alteration Guide"). Control does not return until the character has

been read.

KRKRAKKKRKAKRAKRKKRARR KRR ARKR KR ARRKRKN AR ARk Rk kX
* *
* FUNCTION 4: PUNCH OUTPUT :
*
KAAKKKRKRRRRKRAKNKRKRARRRKRKRARR R Ak hk N kA hhhkhhkhhhkk
* Entry Parameters: ®
Register C: 04H *
* Register E: ASCII Character *
* *
IR RS R RS R R R R 22222222222 R 2

The Punch Output function sends the character from register E to
the logical punch device.

AEAKKKRRKRRRRARRKAARAAR AR AR R AR A AR A A AR R A A A Ak X
* *
* FUNCTION 5: LIST OUTPUT i
* *
ARKKKKKRKARRKRRA AR AR KRR KA RA N AR KA A AR AR KN Ak k&
* Entry Parameters: %
* Register C: @5H *
* Register E: ASCII Character *

*

*
LR RS SRS SRR SRR SRR SRR R RS 2 2

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

AR KK AR A AR AR A AR AR AR AR R A AR AN AR AR R AR R AR Ak
*

FUNCTION 6: DIRECT CONSOLE I/0 :

AAEE AR A A RA R AR RN R AR Rk AR XA R AR A RN KK

Entry Parameters:
Register C: @6H
Register E: OFFH (input) or
char (output)

Returned Value:

Register A: char or status
(no value)
LR R Y R R RS R 2RSSR E 22 3

* R X ¥ X X F X % » ¥

*
*
*
*
*
*
*
*
*

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output 1is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P), Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = @0
if no character is ready, otherwise A contains the next console input

character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(A1l Information Contained Herein is Proprietary to Digital Research.)

19

“‘.--——

KKK RKKKR I AR AR R KA A AR KRR AR AR AT AR R AR I H A A Ak

* *

* FUNCTION 7: GET I/O BYTE *
* *
*t******t*t*tt***it*iti*tit*t*i*tt*t*tt
* Entry Parameters: *

Register C: @7H

Register A: I/0 Byte Value

*
*
*
*
AKRKKKRKRAKKRA KRR AR AKRRKR K RAK IR AR Ah AR h Ak K

*
*
* Returned Value:
*
*

The Get I/O Byte function returns the current value og ;OQYTE in
register A, See the "CP/M Alteration Guide" for IOBYTE definition.

AKX KAREA KA RNk kAR kAR Ak kAR XX

* *

* FUNCTION 8: SET I/O BYTE i
* *

KRR AR A KRR RN AR R A AR RARAR R AR RN KARNA R AR KA A
* Entry Parameters: ®
* Register C: @8H L
* Register E: I/0 Byte Value *
* *
AR AR AR AKX A AN AR AR XAR KRR AR AR A AN AN KX N A

The Set I/0 Byte function changes the system IOBYTE value to
that given in register E.

A ok ek ok ok ok ok ok ok ok ok ok ok o o ok ok o ok ok e ok ok R ok ke ok ok ok

* *

* FUNCTION 9: PRINT STRING x
* *

ARk h kR kkrhkhk ke kA kkk
* Entry Parameters: *

= Register C: ©@9H o
* Registers DE: String Address *
* *

KA KA R KA AR KRR RN KRN KRR AR A AR KRR A AR N A A A Ak kk

The Print String function sends the character string stored 1in
memory at the location given by DE to the console device, until a "§"
is encountered in the string. Tabs are expanded as in function 2, and

checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

11

LR R R R R R R R R s

* *
* FUNCTION 1d: READ CONSOLE BUFFER ®
* *

R S R 2222 22T

* Entry Parameters: *
Register C: OQAH
Registers DE: Buffer Address

Console Characters in Buffer

*
*
*
*
*
*tt*i**i******.*******i*ti************

*

*

*

* Returned Value:
*

*

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows, The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 & B 2 +n

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console, 1if nc
< mx, then uninitialized positions follow the last character, denoted
by "22?" in the above figure. A number of control functions are

recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl=J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriade to the

leftmost position (e.g., ctl=X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to
the extreme left margin). This convention makes operator data input

and line correction more legible,

(All Information Contained Herein is Proprietary to Digital Research.)

12

KK RKA IR KRR R A Ak Rk kA Ak kR kR Rk kK

* *

* FUNCTION 11: GET CONSOLE STATUS *
* *
KhkRKAIRIIA AR ARk Rk A A Ak kkhkhk kA k kk ok k ok ko
* Entry Parameters: L

Register C: 0BH

Register A: Console Status

*
*
*
*
Ak AR AR AR AR AR AR KRR R AR KRR AR AR R A AR RAN kX

*

*

* Returned Value:
*

*

The Console Status function checks to see if a character h?s
been typed at the console., If a character is ready, the value BFFH is
returned in register A. Otherwise a P@H value is returned.

& d % % gk d ok ok ok ek de ok e ke gk v ok e e e ok ok ok ke ok ok ok ke k ok ke k ko ke ok

* *

* FUNCTION 12: RETURN VERSION NUMBER *
* *
R T Y RS R L Lt b

* Entry Parameters: *
Register C: OCH *

*

*

Registers HL: Version Number *

*

*

*

* Returned Value:

*

KA KRR RRR KRR AN AARARAAARRI AR A A A Ak kk ki

provides information which allows version
independent programming. A two-byte value is returned, with H = X’}
designating the CP/M release (H = 01 for MP/M), and L = 0@ for all
releases previous to 2.0, CP/M 2.0 returns a hgxadec1ma1 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for examgle, you can
write application programs which provide both sequential qnd random
access functions, with random access disabled when operating under

early releases of CP/M.

Function 12

(All Information Contained Herein is Proprietary to Digital Research.)

13

KAK KA KRR kAR AR AR A AR RN R RN RARRRRRRANRAAARN AN
* *

* FUNCTION 13: RESET DISK SYSTEM *
:*n*Qt**i*t**ﬁi**ti**i*ﬂ*ﬁa**t**tt**tt:

* Entry Parameters: *®
x Register C: ODH ®
* *
*lt'*t**iiiiﬁi**i**t*t*t*****t*ttﬁ*tk*t

) The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+@@86H., This function can be
used, for example, by an application program which requires a disk
change without a system reboot,

Ehkhkkkk ko h kR Akt ke ket

* *

* FUNCTION 14: SELECT DISK *

* *
(B RS R R s R R R R R R R R R R TR
* Entry Parameters: *
% Register C: OEH x
* Register E: Selected Disk *

*

*
KAk hkokkkkk Ak kA kA hkkkrkkkkhkk ok hkkkk

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= @ for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M enviromment (see
function 28). FCB's which specify drive code zero (dr = @0H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default

drive and directly reference drives A through P,

(All Information Contained Herein is Proprietary to Digital Research,)
14

tt*ﬁ*ﬁ**ﬁﬁt*tt*i*ﬁ**ﬁﬁtw*ttt*lﬂﬁtttﬁt*t
* L]
* FUNCTION 15: OPEN FILE X
* L
HARKRRRRARARAAR AR RN R AR R RARRRRRAARNRARS
* Entry Parameters: ¥
Register C: @FH

Registers DE: PCB Address

Retur ned Value:

Register A: Directory Code

*
*
*
*
*
KRR AR A R R AR AN AR A RARRRR AR AR R KRR AR AR A

*
*
*
*
*
*

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number, The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII guestion mark (3FH) matches any
directory character in any of these positions. Normally, no question
marks are included and, further, bytes “"ex" and "“s2" of the FCB are
zero,

If a directory element is matched, the relevant directory
information is copied into bytes d@ through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a “directory code* with the value # through 3 if the open was
successful, or @FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
dctivated, Note that the curtent tecord ('ot") MUst Be setoed by the
program if the file is to be accessed sequentially from the first

record,

(All Information Contained Herein is Proprietary to Digital Research.)

15

KRR R AR AR R AR AR A AR A AR R AR AR K AN R A AR A Ak ok k&

* *
* FUNCTION 16: CLOSE FILE L]
* *

ARA Rk ARk k Ak hkhk kA kR Ak Ak ko hhk kX ek k ke ok

* Entry Parameters: x
Register C: 18H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

*
*
*
*
*
ERKKKRAA A A Ak kA Ak kA kA kkhkkkkk ARk Rk Ak &

*
*
*
*
*
*

The Close File function performs the inverse of the open
function, Given that the
activated through an open or make function (see functions 15 and 22),
the close
disk directory. The FCB matching process for the close 1is identical
to the open function. The directory code returned for a successful
close operation is 8, 1, 2, or 3, while a @FFH
returned if the file name cannot be found in the directory.
need not be closed if only read operations have taken place.

permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

16

file
FCB addressed by DE has been previously

function permanently records the new FCB in the referenced

(255 decimal) is

A file
If write
operations have occurred, however, the close operation is necessary to

-Gt

******ittt*i***tt*****t****ﬁ**t*t*****t
* *
* FUNCTION 17; SEARCH FOR FIRST %
* *
ﬁ*t**it***ﬁﬁ*tt*i***********t*ﬁ*ﬁ*****i

* Entry Parameters:
Register C: 11H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

*
*
*
*
*
KKK AKK R ARk kR ke hh ko k kA AR Rk AR AR AR A A

*
*
x
*
*
*
*

Search First scans the directory for a match with the file given
by the FCB-addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise #, 1, 2, or 3 is returned
indicating the file is present, In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
nommally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "f1" through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed,

*it*tt*tttttti****tt***ti**t****t***t**
* *
* FUNCTION 18: SEARCH FOR NEXT 3
*
*i**ttii**t*t*itt***tt*t***t*t*t#t**tti
* Entry Parameters: *
Register C: 12H

x

*

* Returned Value:

¥ Register A: Directory Code
AR RRRRRRAIKRARRRNAKRKERRRKR KRR RKRANRRNRN AR KRN

*
*
*
*

*

similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

The Search Next function 1is

(All Information Contained Herein is Proprietary to Digital Research.)

17

Ak h kR AR R kAR AARAR AR AR AR AR Rk ke Ak ok k ek

* *
* FUNCTION 19: DELETE FILE *
* *
kR kAR AR KA AR AR AN A AR R R AR R AR AR R AR A AR Ak &
* Entry Parameters: *
b Register C: 13H *
A Registers DE: FCB Address *
* *
* Returned Value: . *
% Register A: Directory Code *
ERERRKA A KA RI R AR AR AR R AR Rk Ak k ko ko ke kok ok

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

referenced file or
in the range @ to 3 is

Function 19 returns a decimal 255 if the
files cannot be found, otherwise a value
returned.

LR R R T T T

% ®
* FUNCTION 20: READ SEQUENTIAL *
* *
KA KKK A KA AKAARAAX A AN AR AR AR A Ak kkkohk kkk ok ok kX
* Entry Parameters: X

Registet &1 14M
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

*
*
*
*
*
IR R SRS E R S 222

]
*
*
*
*
*

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position. If the "“cr* field overflows then the next logical
extent is automatically opened and the “"cr" field is reset to zero in
preparation for the next read operation, The value @@H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

18

"

tttittliiﬁitttttﬂﬁﬁﬂtttti**ttti*iut
* *
* FUNCTION 21: WRITE SEQUENTIAL *
* *
IR SRS R R E R R Y 222222222220
* Entry Parameters:

Register C: 15H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

*
*
*
*
*
*
KRR KKK KRR R AR AR R AR R AR AR AR AR AR R AN RANKNA

*
*
*
*
*
*

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the file, and the "cr" field is automatically incremented to the next
record position, If the “cr* field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero 1in
preparation for the next write operation, Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = 2@H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

AR ERRK AR AR A kR R AR AR R A AR R AR KA kA Ak &
* *
* FUNCTION 22: MAKE FILE ¥
* *
i***tit!iiﬁ****i**tiiﬁtﬁ**ttiiitttt*l**
* Entry Parameters: *
Register C: 16H

Registers DE: FCB Address

Returned value:
Register A: Directory Code

*
*
*
*
*
Ak hkhkhhhkhkhkhkh Rk Rk hxkhhh Ak Ak Rk X AR AR AR X

*
*
*
*
*
*

The Make File operation is similar to the open file .opeFatlon
except that the FCB must name a file which does not ex1§t‘1n the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if "dr" 1is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no ngllca;e
file names occur, and a preceding delete operation is sgff1c1ent if
there is any possibility of duplication., Upon return, register A= Q.
1, 2, or 3 if the operation was successful and @FFH (255 dgcxmal) if
no more directory space 1is available, The make function has the
side-effect of activating the FCB and thus a subsequent open is not

necessary.

(All Information Contained Herein is Proprietary to Digital Research.)
19

ntttttttlttittttttitniiniwuinl.tnlttil
*

FUNCTION 23: RENAME FILE =

*
-

-

* ®
*'R-lttlilﬁltllti!iittiiitiiiﬁitukii***
* Entry Parameters: B
x Register C: 17H

: Registers DE: FCB Address

&®

*

*

Returned Value:

Register A: Directory Code
iIt-tiitltti.titl****ttiiittit*iiiiti

=
-

*x

"

*

*

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
1n the second 16 bytes. The drive code "dr" at position @ is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
1s set to a value between 8 and 3 if the rename was successful, and
UFFH (255 decimal) if the first file name could not be found in the
directory scan,

XX E AR R AR R R Ak R kAR AR AR AR AN AR AR AR R AR AR
x

FUNCTION 24: RETURN LOGIN VECTOR i
*

KA KK A kA AR XA R A AR A R A AR AR R AR AR AR A RN RK KK

*

*

*

*

* Entry Parameters:
¥ Register C: 18H
*

*

*

x

Returned Value:

Registers HL: Login Vector
WR KA KK KKk A Kk Kk Kk k& Xk ok ok ok ok X ok ok ok ok ok ok ok ok

*
*
*
*
*
*

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A "P" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero *“dr" field, Note that
compatibility is maintained with earlier releases, since registers A

and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

D o v,

ﬂll!ltﬁli.i!i!l..il!..‘llht'ﬂn‘ﬂ‘.....
"

FUNCTION 25: RETURN CURRENT DISK k

N
"

®

' *
'\tliii*I‘In!'tttﬂl*t#ntlitﬂﬁlikittiﬁtﬁti
* Entry Parameters: L
* Register C: 194

*

*

*

~

Register A: Current Disk

*
*x
Returned Value: ¥
*
uta:atttittnt-nn‘tnttatatnn:-nantﬁ:ttt

Function 25 returns the currently selectea default disk number

in register A. The disk numbers range from 6 through 15 corresponding
to drives A through P.

AXARKAARR AR AN ANRRKNA AN AR ARRARAARRNNKRANRNRRR
*

*
*

*
* FUNCTION 26: SET DMA ADDRESS
*

KKK KRIRKKRA R R AR AR KRR AR KRR AR NI A

* Entry Parameters: i
* Register C: 1AH i
* Registers DE: DMA Address =
*

AR ANKN A AR AR R A AR R AR A AR A RARNT RN RN R A bk Xk

*

i i i 1 ften

"DMA" is an acronym for Direct Memory Address, which 1is o

used in connection with disk controllers which directly access Fhe
memory of the mainframe computer to transfer data to and from the disk

subsystem. Although many computer systems use non-DMA access (iL.e.,
the Ydata is tra%sfezeg through programmed 1/0 operatlons)izghebDEA
yte

address has, in CP/M, come to mean the address at whxch'the

data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the _DMA address 1s
automatically set to BOOT+8@86H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subseguent Set DMA

function, cold start, warm start, or disk system reset,

(All Information Contained Herein is Proprietary to Digital Research.)

21

A AN AR RAR R AR ARARNRRARANAARR AN AN AN AR R kK
*

FUNCTION 27: GET ADDR(ALLOC) N
*

AAXRAAA A AN R AR AR AR AR RAAA AR RN AN N AR NN

Entry Parameters:
Register C: 1BH

Returned Value:

Registers HL: ALLOC Address
AEKA AR KRR AR AR A RN A RRA AR AR AR R AR AR R A A NN AR

¥O% % ¥ N OB N OB ¥ ¥

*
*
x
*
*
*

An “allocation vector" is maintained in main memory for each
on-line disk drive. various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program), Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the _selected disk
has been marked read/only. Although this function 1s not notma;ly
used by application programs, additional dgtails of the allocation
vector are found in the "CP/M Alteration Guide."

AR KKK AR AR KRR RN AR AN RN R A A RN R RAR RN AR AR AR AN
* *

* FUNCTION 28: WRITE PROTECT DISK :
x
AR KRR AR KK AR KRR R AR RN KRR R ANR KA RR AR RN R Rk A

* Entry Parameters: ¥
* Register C: 1CH :
*

2 2 R 2 2222222222222 2222222222 R 2 8 2

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the

message
Bdos Err on d: R/0

(All Information Contained Herein is Proprietary to Digital Research.)

22

AAIAKIAE AR AR AR A AR A A AR AR IR A RRRN R AR AR AN R AN

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *
ARk AI A AR AR R A A AR A AR AR AR AR AR R RRAKRARRR AR
* Entry Parameters: ®
* Register C: 1DH i
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
Ak khkhk kA kA Ak Ak Ak Ak AR A A AR AR AANARRAAARKNR AR

Function 29 returns a bit vector in register pair alL ’wnich
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/Q bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

LR R R E R R R R AR

* *
* FUNCTION 3¢: SET FILE ATTRIBUTES -
* *

KRKRK Ak kXA kR kA Ak hk kA h kR Ak A Ak kA A A Ak hkkk
* Entry Parameters: *

N Register C: 1EH *
* Registers DE: FCB Address :
*
* Returned Value: iy
% Register A: Directory Code *
LR 2222 R 2R R R R 2

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2') can be set or
reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl1' through f4' are not presently used, but

may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators f5' through £8' and t3' are reserved for future system
expansion,

. (All Information Contained Herein is Proprietary to Digital Research.)

23

RRAARAAARKANARAARAARRAANRRRR AR AR RAARRARAN

» *

* FUNCTION 31: GET ADDR(DISK PARMS) *
*

ARAARAARRAR R AN R AR R AR AR A AR AR A AR AR R R

* Entry Parameters: 3
* Register C: 1FH "
* *
* Returned Value: *
> *
* *

Registers HL: DPB Address
ARAR A A RN AR A AN IR A AR AR A AR AR AR AR R AR AR

The address of the BIOS resident disk parameter block
returned in HL as a result of this function call. This address can

used ftor either of two purposes,

programs can dynamically change the values of current disk parameterg
when the disk environment changes, if required. Normally, applicatiop

programs will not require this facility.

EAE AR A A AR AR R RN AR AR A AR R R AR R AR R RN ARk k
*

*
*

*

* FUNCTION 32: SET/GET USER CODE
*

LR R s S P S PR R R 2220
* Entry Parameters: L
Register C: 20H

Register E: OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or

(no value)

*
*
*
*
*
*
*
R e s L e iR Rs

*
*
*
x
*
*
*
*

An application program can change or interrogate the currently

active user number by calling function 32. 1If register E = 8FFH, then
the value of the current user number is returned in register A, where

the value is in the range 0 to 31, 1If register E is not OFFH, then
the current user number is changed to the value of E (modulo 32).

(A1l Information Contained Herein is Proprietary to Digital Research.)' ‘
/J

24

First, the disk parameter values cap
be extracted for display and space computation purposes, or transient

AR ARRNAR AR AR AR AR A AR R AN R AR R R R AR kA Ak h A K
* *

* FUNCTION 33: READ RANDOM

*
*

KKK R KRR KRR AN KRN AR RN AR R AN AR AN KA RN A A A K

Entry Parameters: *
Register C: 21H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

*
*
*
*
*
KKK KRR AK R A AR AR AR RN A A AR AR AR KA RNk

*
*
*
*
*
*
*

The Read Random function is similar to the sequential f%le read
previous releases, except that the read operation takes

operation of]
selected by the 24-bit value

place at a particular record number,
constructed from the three byte field following the FCB (byte

positions r@ at 33, rl at 34, and r2 at 35). Note th§t the squence
of 24 bits is stored with least significant byte first (rd), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte

r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past

the end of file,

Thus, the r8,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from # to
65535, providing access to any particular record of the 8 megabyte
file. 1In order to process a file using random access, the base extent

extent @) must first be opened. Although the base extent may or may
ot contain any allocated data, this ensures that the file is properly
recorded in the directory, and 1is visible in DIR reguests, The
selected record number is then stored into the random record field
(r@,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 0@ indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number 1is not advanced. Thus, subsequent random read

operations continue to read the same record.

Upon each random read operation, the logical extent and current

record values are automatically set, Thus, the file can Dbe
sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are

listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

reading unwritten data

1

82 (not returned in random mode)

#3 cannot close current extent j
04 seek to unwritten extent i
85 (not returned in read mode) '
06 seek past physical end of disk ’

; §
Error code #1 and @4 occur when a random read operation accesses , i
data block which has not been previously written, or an extent whigp '
has not been created, which are equivalent conditions, Error 3 doeg

not nommally occur under proper system operation, but can be clear

"
i

.

by simply re-reading, or re-opening extent zero as long as the disk
not physically write protected. Error code 86 occurs whenever byt 2
is non-zero under the current 2.8 release. Normally, non-zero retyg,
codes can be treated as missing data, with zero return codsg

indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.

26

KRR AR KA AR R AR AR AR R R A AR A AR AR AR ARRNRR
*

x
* FUNCTION 34: WRITE RANDOM N
* *
KKK AR RN AR AR RN A AR RNARA R ANARRNR RN RN
* Entry Parameters: L
* Register C: 22H *
* Registers DE: FCB Address x
* *
* Returned Value: =
: Register A: Return Code N
*

AAKKR AR A A AR KK A AR AR R R AR RARRRRR R AR

The Write Random operation is initiated similar to the Read

call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

switch as it does in sequential mode.

; 4 random write ate identical to the
e addition of etror code 85, which
created to directory

Random

random
indicates that a
overflow,

The error codes returned b
read oOpscadisn with ¢

new extent cannot be due

(A1l Information Contained Herein is Proprietary to Digital Research.)

27

AREAARAANA R A AR AN A R AR A AR AR AR N AN R AR R AR RR
*

*

* AR RRAERRE R I RN AR AR AR R KK RRARNNRRRN AR AR
* FUNCTION 35: COMPUTE FILE SIZE *
*

ARARRAARKERK R AR AR KRR AR A KRR R RRRRR KK KR

* Entry Parameters:
Register C: 23H
Registers DE: FCB Address

*
* FUNCTION 36: SET RANDOM RECORD =
*

*
ttit*i**tlt*ﬂi*i***ﬁti**lttittttiittt**

* Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:

Random Record Field Set

*
*
*
*
*
*
AT R AR R A AR AR AR AR AN A AR R AR R R AR AR AR KRN

Random Record Field Set

*
*
*
*
*
*
HER KRR A RR AR AR AR AR AR AR KA Rk kA AR AR AR KA XK

*
*
* *
* *
L * Returned Value:
* *

*

The Set Random Record function causes the BDOS to automatically

the random record position from a file which has been read or
The function can be

When computing the size of a file, the DE register paip
addresses an FCB in random mode format (bytes r@, rl, and r2 ar
present). The FCB contains an unambiguous file name which is used i
the directory scan. Upon return, the random record bytes contain th
“virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call tg
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536, Otherwise, bytes r@ and rl constitute a
l16-bit value (r® 1is the least significant byte, as before) which ig
the file size.

produce
written sequentially to a particular point.
useful in two ways.

First, it is often necessary to initially read anq scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. 1f thg data
unit size is 128 bytes, the resulting record position %s placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by perfo;ming a random read
using the corresponding random record number which was saved earlier,
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relat%ve byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets thé record number, and subsequent random read and

write operations continue from the selected point in the file.

~ Data can be appended to the end of an existing file by simpl¥
calling function 35 to set the random record position to the end o

file, then performing a sequence of random writes starting at the
preset record address,

The virtual size of a file corresponds to the physical size when

Fhe file is written sequentially., If, instead, the file was create
in random mode and “holes" exist in the allocation, then the file may

in fact contain fewer records than the size indicates. I1f, for
example, only the last record of an eight megabyte file is written in
random mode (i.e.,, record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

. (All Information Contained Herein is Proprietary to Digital Research.)

(All Information Contained Herein is Proprietary to Digital Research.)
29

28

3. A SAMPLE FILE-TO-FILE COPY PROGRAM. 0105 116cB0 1xi d,fcb2 ; source of move
The program shown pelow provides a telatively simple example of gigg fldaﬂl cob: 1xi h,dfcb ; dest1nat1gn fcb
file operations. The program source file is created as COPY.ASM usin 1 13 mfcb: 1ldax d ; source fc
the CP/M ED program and then assembled using ASM or MAC, resulting i‘i', ' o109 77 inx d : zeadyfngxt
a “HEX" file. The LOAD program is the used to produce a COPY.COM file alde 23 mov E,a ; des; gext
which executes directly under the CCP. The program beglgs SY setting g10f @d égi c : iijnz 16...0
and then proceeds to move the 2110 c20b01 e P s ; fount s tines

the stack pointer to a local area,
@P6CH to a 33-byte file control

Sfcond name from the default area at .
block called DFCB. The DFCB is then prepared for file operations by .
. x ; ro cr
clearing the current record field. At this point, the source 0113 af 2?26 hasabeen m°¥eg Zeoh

he SFCB at 0@5CH ig 9114 32fadl sta dfcber 3 current rec =0

destination FCB's are ready for processing since t
properly set-up by the CCP upon entry to the COPY program. That is
the first name is placed into the default fcb, with the proper fields

source and destination fcb's ready

. we

zeroed, including the current record field at 00 7CH. The program
continues by opening the source file, deleting any exising destination 9117 115c00 1xi d,sfcb source file
If all this is glla cd6901 call open error if 255

file, and then creating the destination file.
successful, the program loops at the label COPY until each record has
been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file is closed
returns to the CCP command level by jumping to BOOT.

gl1a 118761

9120 3c
@121 cc6lol

255 becomes @

1xi d,nofile; ready message
; done if no file

inr a
aZ finis

7 p X
source file open prep destination

and the program
9124 11dadl 1xi d,dfcb destination
9127 cd7301 call delete ; remove if present
H sample file-to-file copy program 9l2a 1lldabl ' 1xi d,dfcb i destination
: gl2d cdszpl call make ; create the file
; at the ccp level, the command 9130 119601 1xi d,nodir ; ready message
i 9133 3c inr a ; 255 becomes 0
; copy a:X.y b:u.v . 9134 ccolbl cz finis ; done if no dir space
! H
1 sepied the Pile named r.y from drive ; source file open, dest file open
! a to a file named u.v on drive b. : copy until end of file on source
o0p00 = boot equ pABOh ; system reboot 9137 115ch8 éopy: 1xi d,sfcb ; source
9ees = bdos equ 9@065h ; bdos entry point gl3a cd7801 call read ; read next record
pB5c = fcbl equ p85ch ; first file name 9134 b7 ora a : end of file?
#@5c = sfcb equ fcbl ; source fcb pl3e c25101 jnz eofile ; skip write if so
@B6c = fcb2 equ ggéch ; second file name H
po8o = dbuff equ 2086h ; default buffer ; not end of file, write the record
9108 = tpa egu 9100h ; beginning of tpa 9141 11gapl 1xi d,dfcb destination
i 9144 cd7del call write ; write record
90089 = printf equ 9 ; print buffer func# 9147 11a901 1xi d,space ; ready message
poRf = openf equ 15 ; open file func# plda b7 ora a ; bO if write ok
0018 = closef equ 16 ; close file func# pl4b c46101 cnz finis ; end if sO
9013 = deletef equ 19 ; delete file func# Pl4e c33701 jmp copy ; loop until eof
p9l4 = readf equ 20 ; seqguential read ;
@815 = writef equ 21 ; sequential write eofile: ; end of file, close destination
8016 = makef equ 22 ; make file func# p151 11dafl 1xi d,dfcb destination
i §154 cdéedl call close ; 255 if error
0100 org tpa ; beginning of tpa 0157 21bbd1l 1xi h,wrprot; ready message
#1090 311b82 1xi sp,stack; local stack plsa 3c inr a ; 255 becomes 00
i) p15b cc6101 cz finis ; shouldn't happen
i move second file name to dfcb H
9103 Pdeld mvi c,16 ; half an fcb . H copy operation complete, end

(All Information Contained Herein is Proprietary to pigital Research.)

(All Information Contained Herein 18 Proprietary to Digital Research.)

30

31

#15e llcc@l 1xi d,normal; ready message
finis: ; write message given by de, reboot
0161 ded9 mvi c,printf
0163 cdas500 call bdos ; write message
0166 c30000 jmp boot ; reboot system
; system interface subroutines
H (all return directly from bdos)
0169 Pdedf 6pen mvi c,openf
Pl6b c30500 jmp bdos
0lée Peld élose: mvi c,closef
0170 c30500 jmp bdos
9173 pel3 delete: mvi c,deletef
0175 c305880 jmp bdos
0178 Peld read: mvi c,readf
917a c38500 jmp bdos
017d 0el5 write: mvi c,writef
B17f c30590 jmp bdos
0182 Gelé make: mvi c,makef
0184 c39500 jmp bdos

? console messages
9187 6e6f20fnofile: db 'no source file$'
8196 6e6f289nodir: db ‘no directory space$'
8la9 6f7574fspace: db ‘out of data space$'
Blbb 7772695wrprot: db 'write protected?$’
dlcc 636f700normal: db 'copy complete$'

; data areas
Plda dfchb: ds 33 ; destination fcb
plfa = dfcber equ dfcb+32 ; current record
01fb ds 32 ; 16 level stack
stack:
B21b end

simplifications 1in this particular
program, First, there are no checks for invalid file names which
could, for example, contain ambiguous references, This situation

could be detected by scanning the 32 byte default area starting at
location BB5CH for ASCII question marks. A check should also be made

to ensure that the file names have, in fact, been included (check
locations @®SDH and PB6DH for non-blank ASCII characters), Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation, One could, for example, determine

Note that there are several

32

the size of memory by fetching FBASE from location @@@6H and use the
entire remaining portion of memory for a data buffer. In this oase,
the programmer simply resets the DMA address to the next successive
128 byte area before each read, Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to

the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4. A SAMPLE FILE DUMP UTILITY.
1b
The file dump program shown below is slightly more complex than g%ld
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, an '12@
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before | p123
returning directly to the CCP. Thus, the dump prograr does nog 0124
perform and warm start at the end of processing. 9127
8
; DUMP program reads input file and displays hex data g%%b
0100 org 106h
0008s = bdos equ 0005h ;dos entry point plac
bool = cons equ 1 ;read console plad
0002 = typef equ 2 ;type function 812f
0009 = printf equ 9 ;buffer print entry
poBb = brkf equ 11 ;break key function (true if char 2132
geof = openf equ 15 ;file open
0014 = readf equ 20 ;read function
i p135
085c = fcb egu 5¢ch ;file control block address
0080 = buff equ 80h ;input disk buffer address p138
; 9139
H non graphic characters
0084 = cr equ 6dh ;carriage return 013c
poga = 1f equ fah ;line feed 013d
: 0149
H file control block definitions 141
Bos5c = fcbdn egu fcb+d ;disk name .
p@s5d = fcbfn equ fcb+l ;file name 0144
0065 = fcbft equ fcb+9 ;disk file type (3 characters) 9145
0068 = fcbrl equ fcb+l2 ;file's current reel number 0147
pB6b = fcbrc egqu fcb+l5 ;file's record count (8 to 128) f0l4a
go7c = fcbcr equ fcb+32 ;current (next) record number (0 014b
0874 = fcbln equ fcb+33 ;fcb length 014e
; set up stack
0100 210000 1xi h,®
9183 39 dad sp
; entry stack pointer in hl from the ccp 0151
9104 2215062 shld oldsp 0154
7 set sp to local stack area (restored at finis) 8157
0187 315782 1xi sp,stktop
: read and print successive buffers 9158
ploa cdclpl call setup ;set up input file
plod feff cpi 255 ;255 if file not present
010f c21bdl jnz openok ;skip if open is ok
: file not there, give error message and return
p112 11£301 Ixi d,opnmsg 9159
115 cd9chl call err 815c
118 c35101 jmp finis ;to return 815e
plel

~

(All Information Contained Herein is Proprietary to Digital Research.)

34

3e80
321302

210000

e5
cdaz201
el
das51d1
47

74
e6df
c24401

cd7201

cd5901

0f
da5101

1c
cdsfal
7d
cdsfal

23
3e20
cd6501
78
cdsfel
c32301

cd7201
2als502
f9

c9

e5d5c5
Delb

cdes500
cldlel

openok:

gloop:

e

nonum:

~ ~e ~e PR

O~ o~ ose e

inis:

;open operation ok, set buffer index to end

mvi a,86h .
sta ibp ;set buffer pointer to 80h

hl contains next address to print
;start with 0000

1xi h,@

push h ;save line position

call gnb) o

pop h ;recall line position)
jc finis ;carry set by gnb if end file
mov b,a

print hex values
check for line fold

mov a,l)
ani 8fh ;check low 4 bits
jnz nonum

print line number

call crlf

check for break key

call break

accum lsb = 1 if character ready

rrc ;into carry

jc finis ;don't print any more
mov a,h

call phex

mov a,l

call phex

inx h ;to next line number
mvi a;* *

call pchar

mov a,b

call phex

jmp gloop

end of dump, return to ccp
(note that a jmp to 0886h reboots)

call crlf
1hld oldsp
sphl

stack pointer contains ccp's stack location
ret ;to the ccp

subroutines

;check break key (actually any key will do)
push h! push d! push b; enviromment saved
mvi c,brkef

call bdos

pop b! pop d! pop h; enviromnment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

0l64

8165
2168
91l6a
#1l6b
@1lé6e
0171

p172
0174
0177
8179
@17c

p17d
017f
0181

0184
0186

0189
¥18b
@ 1l8e

918f
0190
9191
8192
8193
8194
8197
0198
019b

P19¢c
p19%e
flal

dlaz
glas
pla7

(All Information Contained Herein is Proprietary to Digital Researc

c9

pchar:
e5d5c5
Ded2
Sf
cdps5ae
cldlel
c9

érlf:
Jeda
cd6501
3eda
cd6501
c9

e60f
feda
d28961

c6 30
c38b@dl

c637 plo
cd6501 prn
c9

f5
33
pf
0f
0f
cd7401
£1
cd7de1l
c9

err:
Bed9

cdes5ee
c9

~o e

gnb:
3al382
fe80
c2b301

ret

;print a character

push h! push d! push b; saved
mvi c,typef

mov e,a

call bdos

pop b! pop d! pop h; restored
ret

mvi a,er
call pchar
mvi a,lf
call pchar
ret

;print nibble in reg a

ani gfh :low 4 bits
cpi 10
jnc pl@

less than or equal to 9
adi ‘e’

jmp prn

greater or equal to 10
adi '‘a' - 16

call pchar

ret

;print hex char in reg a
push psw
rec
rec
rec
rrc
call pnib
pop psw
call pnib
ret

;print nibble

;print error message

d,e addresses message ending with "§"
;print buffer function

mvi c,printf
call bdos
ret

;get next byte

1lda ibp
cpi 80h
jnz go

read another buffer

36

Pplaa cdcedl call diskr
plad b7 ora a

;zero value if read ok

flae cab3@l jz go :for another byte
; end of data, return with carry set for eof
glbl 37 stc
01b2 c9 ret
’
g0: ;read the byte at buff+reg a
§1b3 Sf mov e,a :1s byte of buffer index
p1b4 1600 mvi 4,0 :doubge precision index to de

p1b6 3c inr a
@1b7 321382 sta ibp

~ o~

save the current

plba 218000 1xi h,buff
91lbd 19 dad d

flbe 7e mov a,m

; index=index+1
;back to memory
pointer is incremented

file address

absolute character address is in hl

byte is in the accumulator
;reset carry bit

f1bf b7 ora a
B1lchd c9 ret
’
setup: ;set up file
H open the file for input
Plcl af Xra a ;zero to accum
Plc2 327cBo sta fcbecr ;clear current record
#1lc5 115cP0 1xi d,fcb
01lc8 PeBf mvi c,openf
. flca cdes5e0 call bdos
H 255 in accum if open error

Blcd ¢9 ret

éiskr: ;read disk file record

#lce e5d5c5

push h! push d! push b

p1dl 115c@P 1xi d,fcb

p1d4 @eld mvi c,readf
p1d6 cdes5e0 call bdos

9139 cldlel pop b! pop d! pop h
pldc c9 ret

.
’

fixed message area

#1dd 46494c@signon: db
Pp1f3 @ddadePopnmsg: db

: variable area
p213 ibp: ds 2
0215 oldsp: ds 2

; stack area
0217 ds 64

stktop:

i
8257 end

(All Information Contained Herein is

37

'file dump version 2.0§'
cr,1f,'no input file present on disk$'

;input buffer pointer
;entry sp value from ccp

;reserve 32 level stack

Proprietary to Digital Research.)

5. A SAMPLE RANDOM ACCESS PROGRAN.

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs

the simple function of reading or writing random records upon commang
from the terminal, Given that the program has been created, .
asse“béed, and placed into a file labelled RANDOM.COM, the CCP level

command :

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for‘input. If not found, the file 1is created before the
prompt is given., Each prompt takes the form

next command?
and is followed by operator input, terminated by a carriage return,
The input commanas take the form

nw nR (0]
where n is an integer value in the range @ to 65535, and W, R, and Q
are simple command characters corresponding to random write, random

If the W command is 1issued,

read, and quit processing, respectively.
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads

record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the

only error message is
error, try again

initialization section where the

input file is opened or created, followed by a continuous loop at the
label "ready"” where the inaividual commands are interpreted. The
default file control block at @@5CH and the default buffer at 2080H

are used in all disk operations. The utility subroutines then follow,

The program begins with an

which contain the principal input line processor, called "readc."
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development,

®

(A1l Information Contained Herein is Proprietary to Digital Research.)

38

*
.**t**t*tﬁtn*t****ﬁ*tt*****t*tttitt***tﬁt*ltlttﬁut*'

*
*

.k
& -~
;* sample random access program for cp/m 2.4
- %

’
;t**’i**ik****ﬁﬂt*t*t**ittt*tttk*

A xhhkhhkhkkkFhhk kA AKX AKX

n100 org 1006h ;base of tpa
i

0000 = reboot equ X%)] ;system reboot

0005 = bdos equ 9@85h ;bdos entry point

0001 = éoninp equ 1 ;console input function

ppo2 = conout egqu 2 ;console output fqncfl?n

poo9 = pstring equ 9 ;print string until 'S

g0ha = rstring equ 10 jread console buffer

ppoc = version equ 12 ;return version number

8eof = openf equ 15 ;file open function

1o = closef equ 16 ;close function)

pel6 = makef equ 22 ;make file function

po21 = readr equ 33 jread random

po22 = writer egu 34 ;write random

005¢c = fcb equ 805ch ;default file control block

907d = ranrec equ fcb+33 ;random record position

po7f = ranovf equ fcb+35 ;high order (overflow) byte

0080 = buff equ @088h ;buffer address

0@0d = ér equ 8dh ;carriage return

goBa = 1f equ fah ;line feed
;*liitttt***ttitt*it***ﬁ***********ii******t****t*tt
. x *x
;* load SP, set-up file for random access »
K% *
:t*t**ktti***t*ﬁ**t**t!!*itt***titii*ttkk***ttttti**
;

2100 31bco 1xi sp,stack
; version 2.807?

0103 Qedc mvi c,version

91905 cdose call bdos

9108 fe2d cpi 26h ;version 2.8 or better?

plPa d2160 jnc versok
: bad version, message and go back

919d 111be Ixi d,badver

0119 cddad call print

8113 c3000 jmp reboot
H
versok:
: correct version for random access

9116 Gebf mvi c,openf ;open default fcb

9118 115cP 1xi g, fcb

0llb cdose call bdos

Plle 3c inr a ;err 255 becomes zero

P11f c2370 jnz ready

cannot open file, so create it

All Information Contained Herein is Proprietary to Digital Research.)

39

;restore next to £ill

8122 Belb mvi c,makef
8124 115co 1xi d,fcbh gléc cl pop b
0127 cdes5e call bdos 016d fedd cpi cr iend of line?
8l2a 3c inr a serr 255 becomes zero plef ca7se jz erloop
812b c2379 jnz ready . g172 77 i not end, store character
: mov m,a
: cannot create file, directory full gi;i ;g énx h .nexttto fli; soun
912 113a0 1xi &,nospace dcr c ;counter go
2131 cddad call print 0175 c2668 — jnz rloop -end of buffer?
9134 c3000 jmp reboot ;back to ccp ps
5 i end of read loop, store 00
e ttt**tt*ttt**t**k**t*i***t*t*t****ttt*t*t*****ttt 178 3600 mvi m,0
’ * ;
-k
+* loop back to “ready" after each command : §17a Be22 i ;z;te thg ::ei::;c[i to selected record number
- x ’
:iii*ti**tttit**t*ti*ii*tt********ttttt********'**** gl7c 115c0 1xi d,fcb
: p17f cdb5@ call bdos
;eady- 0182 b7 ora a serror code zero?
' ; ; : @183 c2b9@ jnz error ;message if not
; file is ready for processing)
186 c3378@ m a ;for another record
H ; mp ready fo]
8137 cde50 call readcom jread next command ax USSP T L
@l3a 22740 shld ranrec jstore input recordf ‘% s
91338 217f8 Ixi h,ranovf f X
8140 36080 mvi m,o .clear high byte if set i* end of write command, process read &
p142 fe51 cpi Q" ;quit? !
9144 CZSGQ jnz notq ;1:;::****#*****t***l‘***********t*****ttt******itt*iﬁﬁ
i qut processing, close file p— H noF a wr§§? command, read record?
0147 Geld mvi c,closef cpl .
2149 115ch 1xi 4, fcb p18b c2b9d@ . jnz error ;skip if not
gl4c cdos5o call bdos . i
p14f 3c inr a serr 255 becomes 0 y i read random record
p150 cab9p jz error ;error message, retry gigﬁ ?i5éa T:; S'Eggdr
9153 c3000) jmp reboot j;back to ccp 193 cddse aall béos
L R b bbbl 9196 b7 ora a ;return code 80?
g * 9197 c2b90 jnz error
L x it and, process ite 4. i
- B, (el G GO e we * H read was successful, write to console
;i *% t*tt**tt*tt*tt*i*kii***t*l*ttt**t***t*ti**t**** 919a cdcfp call crlf ;new line
notq: 0194 0e8P mvi c,128 ;max 128 characters
; not the guit command, random write? 019f 21800 ¥ 1xi h,buff ;next to get
9156 fe57 cpi W wloop:
@15& c2890 jnz notw giag ;; moz ﬁ,m ;next iharaiter
" a in ;next to ge
; this is a random write, fill buffer until cr 0la4 e67f ani 7fh ;mask parity
g15b 114d0 1xi d,datmsg flaé ca37@ jz ready :for another command if @8
pl5e cddad call print ;data prompt 8la9 c5 push b ;save counter
161 De7f mvi c,127 ;up to 127 characters Blaa e5 push h ;save next to get
2163 2184@0 1xi h,buff ;destination 0lab fe2@ cpi Lo ,g:aphlc?
rloop: ;read next character to buff 0lad d4c8é cne putchr ;skip output if not
166 c5 push b ;save counter f1b0d el pop h
2167 €5 push h ;next destination #1bl cl pop b
9168 cdc2® call getchr ;character to a 01lb2 @d dcr c ;count=count-1
gléb el pop h ;restore counter 01b3 c2a20 jnz wloop
. 01b6 c3370]mp ready

(All Information Contained Herein is Proprietary to Digital Research.)
(A1l Information Contained Herein is Proprietary to Digital Research.)

40
41

81b9 115980

01lbc cdda@
g1lbf c33790

0lc2 Pebl
01lcd4 cdes50
01lc7 cY

01c8 Peb2
dlca 5f
9lcb cde59
¢lce c9

¢plct 3eld
p1d1 cdc8pd
0144 3eDa
91d6 cdc8hd
9149 c9

glda d5
91ldb cdcfp
g 1lde al
¢14f Ped9
flel cdbds5e¥

pled c9

gle5 116bd
#1le8 cdda#
pleb deba

gled 117ab
91f0 cdes5ed

(A1l Information Contained Herein is Proprietary to Digital Research.)

i
Ak KRR K KKK KKK KK

;***tii*iit*ﬁ***i*l****kﬁi*t*klt*'ﬂ**
ok *
i
*
;* end of read command, all errors end-up here \
: #
;

;t*t*ttt*ttttt*itttt*i*k****t*itt**t*lﬁ*************

H
error:

1x1 d,errmsg
call print
jmp ready
:-*ﬂt*t*tttnata:t*gua**tnxﬁ*t****ﬁtttttt*ﬁt**iﬁ**t*a:
%
;
i+ utility subroutines for console 1/0 :
& W
;t*ititi**tititx*t*t***’*t*ttﬁtti*******************
getchr:
;read next console character to a
mvi c,coninp
call bdos
ret
H
putchr:
;write character from a to console
mvi ¢,conout
mov e,a ;character to send
call bdos ;send character
ret
:
crlfs .
;send carriage return line feed
mvi a,cr ;carriage return
call putchr
mvi a,lf ;line feed
call putchr
ret
i
print:
;print the buffer addressed by de until $
push
call crlf
pop d :new line
mvi c,pstring
call bdos ;orint the string
ret
H
readcom:
;read the next command line to the conbuf
1xi d,prompt
call print ;command?
mvi c,rstring
1xi d,conbuf
call bdos ;read command line

command line is present, scan it

42

01£3
p1f6
p1£9
¢glfa
g1lftb
glfc

plfd
plLtf
020l

0204
0285
206
0207
n208
0209
020a
220b
@20c
v 20f
0210

9213
9215
w217

0218
92la

021b

023a
024d
8259

026b

(A1l Information Contained Herein is Proprietary to Digital Research.)

iiggs Lxi h,® ;start with 0000
™ . 1xi d,conlin;command line
13 : }dax d ;next command character
b7 inx d ;to next command position
’ ora a ,cannot be end of commana
c8 rz &
a630 4 282 zerozﬂ?umetic?
23330 cpi 10 ;carry if numeric
. Jnc endrd
g i add-in next digit
" dad h s *2
22 mov c,l
29 mov b,h ;bc = value * 2
dad h ;%4
29 dad h ;%8
09 dad b 2*2 + %6 = *19
85 add 1 ;+digit
6f mov 1,a
ey jnc readc ;for another char
24 inr h ;overflow
c3£90 jmp readc ;for another char
endrd:
; end of read, restore value in a
c639 adi vg® :command
fe6l cpi et ;translate case?
ds rc
7 lower case, mask lower case bits
e65f ani 10151111b
c9Y ret
;i*iit*tttittt*itkt**kl**ttt**t***t***t***i*f*t**k**
;* *
;: string data area for console messades i
; *
;**ﬁ**t***x*k*t**ttt**i*t******t**i*tt***titt*i*tttt
badver:
536£79 db ‘sorry, you need cp/m version 2$'
nospace:
4e6£29 ‘no directory space$'
datmsg:
547970 db ‘type data: $'
errmsqg:
457272 db ‘error, try again.$'
prompt:
'next command? $'

4e6570 db

’

43

kk kK

t**ﬁ*ii*t****tt**********
*

R
Wwith a little more

At this poi 5
pPoint you're just getting started.

.k
’
T ; * ou cC : :
i fixed and variable data area : gﬁézlreZord SESW:I;gZ a fixed grouping size which differs from the 128
ve. s ; 2
;***t*i*****t***************ttt************t**t**k** ' ecord number as well as t;’[)‘:ls 11-_5 ag;om;t)llls::(’i b{hkeeplggdtrackKoéw_tkl:;
i e offset within the record. nowi
027a 21 conbuf: db conlen ;length of console buffer he gro¥? size, you ‘andomlyyaccess thewrecord b teining the proper
827b consiz: ds 1 iresulting size after read group, offset to the beginning of the group within the record read
027c conlin: ds 32 ;length 32 buffer sequentially until the group size has been exhausted.
0021 = conlen equ $-consiz Finally
; ; . you can improve QUERY considerably by allowing boolean
829c ds 32 ;16 level stack eXP‘§551°E$ SWh1°h compute the set of recordsywh{ch satis%y several
stack: reéz ég:: ;g ’ Egch as a LASTNAME between HARDY and LAUREL, and an AGE
0 2bc end éfnally if. youfPITY ill the records which £fit this description.
. ists are getting too big to fit into memory,
randomly access your key files from the disk as well, One note of

consolation after all this work: if " .
Again, major improvements could be made to this particular you'll have no more need for this manuggg make it through the project,
program to enhance its operation. in fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the

command
GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the “LASTNAME" field from each record, starting at position 19 and
ending at character 28. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME,.KEY, which is an alphabetical
list of LASTNAME fields with their corresponding record numbers.
(This list is called an ‘“inverted index" in information retrieval

parlance.)

e as QUERY, and massage it a bit so

Rename the program shown abov
The command line might

that it reads a sorted key file into memory.
appear as:
QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base.
Ssince the LASTNAME.KEY list is sorted, you can find a particular entry
qguite rapidly by performing a “binary search,” similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search,
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number. Fetch and diSpiay
this record at the console, just as we have done in the program shown

above,
(All Information Contained Herein is Proprietary to Digital Research.)

44

Al : . T
(11 Informatjion Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY.

OUTPUT RESULTS

FUNC FUNCTION NAME INPUT PARAMETERS

@ System Reset none none

1 Console Input none A = char

2 Console OQutput E = char none

3 Reader Input none A = char

4 pPunch Output E = char none

5 List Output E = char none

6 Direct Console I/0 see def see def

7 Get I/O Byte none A = IOBYTE

8 Set 1/0 Byte E = IOBYTE none

9 Print String DE = .Buffer none

10 Read Console Buffer DE = .Buffer see def

11 Get Console Status none A = 00/FF

12 Return Version Number none HL= Version*
13 Reset Disk System none see def

14 Select Disk E = Disk Number see def

15 Open File DE = .FCB A = Dir Code
16 Close File DE = .FCB A = Dir Code
17 Search for First DE = .FCB A = Dir Code
18 search for Next none A = Dir Code
19 Delete File DE = .FCB A = Dir Code
20 Read Sequential DE = .FCB A = Err Code
21 Write Sequential DE = .FCB A = Err Code
22 Make File DE = .FCB A = Dir Code
23 Rename File DE = .FCB A = Dir Code
24 Return Login Vector none HL= Login Vect*
25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = .DMA none

27 Get Addr(Alloc) none HL= .Alloc
28 Write Protect Disk none see def

29 Get R/O Vector none HL= R/0 Vect*
30 Set File Attributes DE = .FCB see def

31 Get Addr(disk parms) none HL= .DPB

32 set/Get User Code see def see def

33 Read Random DE = .FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = .FCB ré, rl, r2
36 Set Random Record DE = ,FCB B, rl, r2

* Note that A = L, and B = H upon return

(All Information Contained Herein is Proprietary to Digital Research.

46

