
•

I

[!Q) ()jlJjTAl RESEARCH®
Post Ot11ce Boll 579, Pac1hc Grove. California 93950. (408) 649-3896

CP/M 2 INTERPACE GUIDE

Copyright {c) 1979

DIGITAL RESEARCH

f".opyright (c) 1979 by Digital Research . All rights reserved.
No part of this publication may bE' reproducE>d, transmitter!.
transcribed, stored in a retrieval system, or translated into
any languags or computer language, in anv form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Dil;ital Research makes no representations or warranties with
respect to the contents hereof and specifical!y disclaims anv
implied warrant ies of merchantability or fitness for any parti
cular purpose. Further, J)igital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notifv any person of such revision or chang-es.

•

•

'

•

l.

2 .

3 .

4.

5 .

6 .

Introduction • •

CP/M 2 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

.
Operating Systen Call Conventions

A Sam~le File-to-File Copy Program.

A Sample File Dump Utility

A Sample Random Access Program .

Systen Function summary

l

3

• 29

• 34

• 3 7

• 46

•

•

l. I NTROOUCT ION.

~'hi s manu a l desc r ibes CP/M, re l eas ~ 2 , system o r ganizati o n
inc lud~ng _th e struc t ur e o f memo ry and s ys t em ent r y poin t s . The
i nt e ntion i s to provide th e necessa ry informat i o n r equired to ~rite
pr og ram s which ope rate unde r CP/M a nd wh ich use the pe r iph~ ra l and
d i s k I/0 f acilities o f th e s y s tem. '

CP/M is logically divide d into four parts , called t h e Basi c I/0
Sys t em , (BIOS), the Basic Disk Operating Sys tem (BDOS), the Conso l e
c omma na processor (CCP), and th e Transient Program Ar e a (TPA) . Tbe:
BI OS i s a hardwar e-d e pe nd e nt modul e which defi nes t he e xa ct l ~~ lev~ l
i nterf ace to a particular c omput e r sys tem whi c h is neces s ary fo r
pe r i phe ral d evice I/0. Although a s tandard BI OS is suppl ied by
Digi t a l Research, e xp li c it in s tructions a re ~r ov i d ed f o r f ield
r e con f igur a tion of the BIOS to match nearly any hardwar e environment
(s ee the Digital Research manual entitl ed " CP/M Alt e ra tion Guide") .
The BIOS and BDOS are logically combined i nto a single modul e with a
common entry point, and r e ferred to as the FDOS. Th e CCP i s a
dis tinct program which uses the FDOS to provid e a human-ori e nted
i nte rface to the informat i on which is cataloged on the backup s t o rage
dev i ce. The TPA is an area of memory (i.e., the portion which i s no t
used by the FDOS and CCP) where various non-resident operating s ystem
c ommands and user programs are executed. The lower portion of memory
i s r e served for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high
memory

FBASE:

CBASE:

TBASE:

BOOT:

FOOS (BDOS+BIOS)

CCP

TPA

system parameters

The exact memor addresses corresponding to BOOT, TB~SE, CBASE~ and
FBASE var fr~m version to version, and are ~escr1bed fully 1n the
"CP/ M Alte~ation Guide." All standard CP/M versions, however, assl:111'e
BOOT - 0000H h "ch is the base of random access memory. Th: machine
c od f- d ' 1 w c~tion BOOT performs a system "warm start" which loads
andein~~~al:;esothe programs and variables neces~ary to retur~ control
t o the CCP. Thus, transient programs need only Jump to location BOOT

(All Information contained Herein is Proprietary to Dig ital Research.)

1

to r e turn contr o l to CP/M at the command level. Further, the stand;
ve r s i o ns a ss ume TBASE = BOOT+0100H whi c h i s normally location 01 0

1
Th e principal entry point to the FOOS is at location BOOT+00 1
.(n o rmally 0 0 05H) wher e a jump t o FBASE i s foun d . Th e ad d ress fiel d
BOOT+0 0 0 6H (normally 0006H) contains the value o f FBASE and can
us ed t o determine the s ize of available memory, a s suming the CCP
b e ing ove rlayed by a transient program.

'I' ransient
follow s . The
l i n e s f o l l ow i ng
f o rm s :

programs are loaded into the TPA ana executed
ope rator communicates with the CCP by typing comma

e ach prompt. Each command line takes one of t

command
command f ilel
command filel file2

w h e r e " c om ma n d " i s e i the r a bu i l t - i n f u n c t i on s u c h a s D IR o r TYPE ,
the name of a transient command or program. If the command is
built-in function of CP/ M, it is executed immediately. Otherwise, t
CCP searches the currer.tly addressed disk for a file by the name

command. COM

If t he fil e is found, it is assumed to be a memory image of a progr ,
whic h executes in the TPA, and thus implicitly originates at TBASE :
memory. The CCP loads the COM file from the disk into memory start i 1
at TBASE and possibly extending up to CBASE.

If the command is
the CCP prepares one
system parameter area.
to access files through
sectio n.

followed by one or two file specification~
or two file control block (FCB) names in t r

These optional FCB's are in the form necessa r
the FOOS, and are described in the nex

The transient program receives control from the CCP and beg i n
exe cuti on, perhaps using the I/0 facilities of the FDOS. Th
transient program is " called" from the CCP, and thus can simply retur
to the CCP upon completion of its processing, or can jump to BOOT t
pass control back to CP/M. In the first case, the transient progra
mu s t not use memory above CBASE, while in the latter case, memory u
through FBASE-1 is free.

The transient program may use the CP/ M I / 0 faciliti e s t
c ommunicate with the operator ' s console and peripheral devices
including the disk subsystem. The I / 0 system is accessed by passing .
"function number" and an "information address " t o CP/ M through th
FDOS entry point at BOOT+0005H. In the cas e of a disk read, to
example, the transient program sends the number corresponding to
d is k r e ad , along w i th the address of an F CB to the C P / M FD o s. Th ,
FDOS, in turn, performs the operation and returns with either a dis l
read c ompletion indication or an error number indicating that the dis ,
read wa s unsuccessful. The function numbers and error indicators ar ,
given in b e low.

(A l l Info rmation Contained Herein is Propri e tary t o Digital Research.)

2

•

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this . .
t o r performing direct se~tion is to provide detail e d info r ma tion
of the functions 1 .~Perat_ing system calls from user p r og r ams . Many

h
ough the I/O is~ed oelow, howeve r, are mor e simp l y a c cessea

t r ma c r o 1 i b r a ry · · · • b l nd listed in th . . proviaed witn the MAC ma c ro assern er ,

A
a

5
em b 1 e r : La ng u a g er.A D i g i t al Re s ea r ch ma nu a l e n t i t l e d " MA C Ma c r o

s e ·1anual and Applications Guide."

CP/ Mffalclil~ties which are availab le for ac cess by tra ns i en t
prog rams a into two g 1 · .. k file I/O Th . en~ra categories : simpl e devi c e I /0 , and
a 1s • e simple device operations includ e :

Read a Console Character
Write a Console Character
Re~d a Sequential Tape Character
Write a Sequential Tape Character
Writ e a List Device Characte r
Get o r Set I/0 Status
Print Con so le Buffer
Read Console Buffer
Interrogate Console Ready

The FOOS operations which perform disk Input/ Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Availa b l e Disks
Interrogate Selected Disk
Set OMA Address
Set/Reset File Indicators

As mentioned above, access to the FOOS functi o ns i s a c c omplished
by pass ing a function number and information ad d re s s t h r ough t he
primary entry point at location BOOT+00.05H. I n ge ner al , the fun c ti on
numbe r is p as sed in req ister C with the informati o n add r ess 1n t he
double by t e pair DE. · Sing le byte value s a re r e turned i n r eg ister A,
wi t h doub le byt e values returned in HL (a zero v alue i s r e t ur ned ~hen
the function numbe r i s out of range). For rea sons of c o!T'patibilitv ,
t eg i s t e r A = L and r eg i s t er B = H upon r e tu r n i n a 11 cases . Note th a t
the r eg i s t er pas s i ng conv e nt ions of C P / M a ~ re e w i t h those of I n t e 1 ' s
~L/ M s y stems programming languag e. Th e 11st of CP/ ~1 f uncti on nunbe rs
1 5 g iven belc,,,,, :

(All Information contained Herein is Proprietary to Dig ital Re sear c h .)

3

0 System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6 Direct Console I/0
7 Get I/0 Byte
8 Set I/0 Byte
9 P r i n t S t r i ng

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next

19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
23 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set OMA Address
27 Get Addr (Alloc)
28 Write Protect Disk
29 Get R/0 Vector
30 Set File Attributes
31 Get Addr(Disk Parms)
32 Set/Get User Code
33 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record

(Functions 28 and 32 should be avoided in application programs t o
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs .
Although this stack is usually not used by a transient program (i.e . •
most transients return to the CCP though a jump to location 0000H). it
is sufficiently large to make CP/M system calls since the FOOS
switches to a 1 ocal stack at sys tern en try. The fol lowing assembly f
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP {assuming a standard CP/M system with BOOT= 0000H):

BOOS EQU 0005H ; STANDARD CP /M ENTRY
CONIN EQU l ;CONSOLE INPUT FUNCTION

ORG 0100H ;BASE OF TPA
N EX 'rC : MVI C,CONIN ;READ NEXT CHARACTER

CALL BOOS ; RE'fURN CHARACTER IN <A >
CPI I* t ;END OF PROCESSING?
JNZ NEXTC ;LOOP IF NOT
RET ; RE'rURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
d~ive . Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
c~aracters, and the file type consisting of zero to three non-blank
c~aracter~. The file t ype names the generic category of a particular
file, while the file name distinguishes individual files in each
category . The file types 1 isted below name a few generic categories,

(All Information Contained Herein is Proprietary to Digital Research.)

4

-

0 System Reset 19 Delete File
l Console Input 20 Read Sequential
2 Console Output 21 Write Sequential
3 Reader Input 22 Make File
4 Punch Ou tput 23 Rename File
5 List Output 24 Return Loqin Vector
6 Direct Conso l e I / 0 25 Return Current Disk
7 Get I /0 Byte 26 Set DMA Address
8 Set I / 0 Byte 27 Get Addr (Alloc)
9 Print String 28 Write Protect Disk

1 0 Read Console Buffer 29 Get R/ 0 Vector
11 Get Conso le Status 30 Set File Attributes
1 2 Return Version Number 31 Get Addr(Disk Parms)
1 3 Reset Disk System 32 Set/ Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next

(Functi ons 28 and 32 should be avoided in application programs to
main tain upward compatibility with MP/ M.)

Upo n entry to a transient program , the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack , leaving seven levels before overflow occurs.
Although this stack i s usually not used by a transient program (i.e. ,
most transient s return to the CCP though a jump to location 0000H), i t
is suffic iently large to make CP/ M system calls since the FOOS
switcnes to a local stack at system entry. The following assembly
language p rog ram segment, for example, reads characters continuously
until an asterisk is encounte red , at which time control returns to the
CCP (assuming a standard CP/ M system with BOOT: 0000H):

BOOS EQU 000511 ;STANDARD CP/M ENTRY
CON IN EQ U 1 ;CONSOLE INPUT FUNCTION

ORG lll00H BASE OF TPA
NEXTC: MVI C,CONIN READ NEXT CHARACTER

CALL BOOS RE'fURN CHARACTER IN <A>
CPI ' * ' END OF PROCESSING?
JNZ NEXTC LOOP IF NOT
RET RETURN TO CCP
END

CP/M impl ements a named file st ructure on each disk, providing a
log i c al o rganization which allows any particular file to contain any
numbe r of r ecords fr om completely empty , to the full capacity of the
d rive. Each drive i s logically distinct with a disk dir ectory and
file data area. The disk file names are in three parts: th e drive
se lect code , th e file name consisting of one to eight non-blank
cha r ac ters, and the fil e type consisting of zero to three non- blank
cha rac t e r s. The file type names the generi c category o f a parti cular
file , while the file name dis tingui s hes individual files in each
category. Th e file t ypes li sted below name a few generic categories

(A ll Informat ion Con tained He rein is Proprietary to Digital Resear c h .)

4

,.

•

•

wh ich have been established , although they are generally arbitrary:

ASM
PRN
HEX
BAS
INT
COM

Assembler Source
Pr inter Listing
Hex Machine Code
Basic Source Fil e
Intermediate Code
CCP Command File

PLI
REL
TEX
BAK
SYM
$$$

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

sour ce files are treated as a sequence of ASCII characters, where each
" line" of the source file is followed by a carriage- return line-feed
seque nce (0DH followed by 0AH) . Thus one 128 byte CP/ M record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file , returned
by the CP/M read operation. control-Z characters embedded within
machine code files (e .g., COM files) are ignored , however, and the end
o f file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allow ing a maximum of 8 megabytes per file . Note, however , that
although the records may be considered logically contiguous , they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB) . Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a de~ault location for disk I/0 is provided by CP/M
at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release l, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file is accessed randomly . The default file
normally located at 005CH can be used for random access
the three bytes starting at BOOT+007DH are available for
The FCB format is shown with the following fields:

a sequence of
in the case
control block
files, since
th is purpose.

(All Information Contained Herein is Proprietary to Digital Research.)

5

ldrlfll f 21 / / lf8ltllt2/t31exlslls2/rcld01 / / ldn/cr/r0lrl/r21
--
00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
0 = > use default drive for file
1 = > auto disk s e l e ct driv e A ,
2 = > au to disk select driv e B ,

16= > auto di sk sele c t drive P .

fl. •• f8 co ntain the file name in ASCII
u ppe r case , with high bit= 0

tl , t2 , t3 contain the file type in ASCII
upper case , with high bit= 0
tl' , t2 ', and t3 ' denote the
bit of these positions ,
tl ' = 1 = > Read / Only file ,
t 2 ' = l = > SYS file , no DIR list

ex contains the current extent number ,
normally set to 00 by the user , but
in ra ng e 0 - 31 during file I / 0

sl

s 2

r ese rved for internal system use

r es erved for internal system use , set
to zer o on call to OPEN , MAKE , SEARCH

re record count for extent "ex , "
takes on values from 0 - 128

d0 ••. dn filled - in by CP/M , reserved for
system use

er current record to read or write in
a sequential file operation, normally
set to zero by user

r 0 , rl , r2 optional randan record number in the
range 0 - 65535 , with overflow to r2 ,
r0 , rl constitute a 16-bit value with
low by te r0 , and high byte rl

Each f il e being accessed through CP/ M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files , it is the
programmer ' s re spo nsibility t o fill the lowe r sixtee n bytes of the FCB
and initialize th e "er " field . Normally , bytes 1 through 11 are set
to the ASCII character values f o r the file name and file type , while
all other fields are zero .

(All Information Contained Herein is Proprietary to Digital Research .)

6

•

•

FCB ' s are stored in a directory area of the disk, ano _are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of • the FCB 1 s
updated as file operations take place and later _recordeo perman e ntl y
on disk at the termination of the file operation (see the CLOSE
command) .

The CCP constructs the first sixte e n bytes ot two optional FCB's
tor a transient by scanninq the remainder of the line following the
transient name, denoted by "filel " ano " file2 " in the proto type
command line described above, with unspecified fields set to ASCII
olanks. The first FCI3 is constructed at location BOO'l"+005CH, and can
be used as-is for subsequent file operations. Th e second FCB occupies
the d~ ••• dn portion of the first FC6, and must be moveo t o another
area of memory before use. If. for example , the operator types

PROGNAME B: X. ZOT 'i . ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+005CH is initialized to drive cooe 2, file name " X" ano file t y pe
" ZOT ". The second drive code Lakes the default value 0 , which is
placed at BOOT+006CH, with the tile name " 'i " pla c ed into l oca tion
BOOT+606DH and file type " ZAP " located 8 oytes later at BOOT+0075H.
All remaining fields through "er " .are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at B0C'l'+005CH, due to the fact that the
open operation will overwrite the second name an d type.

If no file names are specified in the original command, th e n the
fields beginning at BOOT+005DH and BOOT+006DH cont a in blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/ M file naming conventions.

As an added convenience, the default buff e r area at location
BOOT+0080H is initialized to the command line tail typea by the
operator following the program name. 'I'he first position contains the
number of characters, with the characters themselves followinq the
character count. Given the a bove command line, the area beginning at
BOO·I'+OOtHit-i is initialized as follows :

BOOT+0080H :
+00 +01 +62 +03 +ij4 +ij5 +06 +07 +08 +09 +10 +11 +12 +13 +14

14 "" " B" " : " " X"" " "Z " "0" " T " " " " 'i " " " " Z" " A" " P "

wh e re the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is
the re spo nsibility of the programmer to extract the information from
tnis ouffer before any file operations are pe rtormed, unless the
default OMA aodress is explicitly changed.

The individual functions are described in detail in the pages
which fo l low .

(All Information Contained Herein is Proprietary to Digital Research.)

7

* FUNCTION I! : Sy s tem Reset
*
*
*

Entry Parameters :

Register C : 00H
*
*

The system r ese t function returns control to the CP/M operating
sys tem at the CCP level . The CCP re- initializes the disk subsystem by
selecting and l ogg ing - in disk drive A. This function has exactly the
same effec t as a jump to location BOOT.

* *

FUNCTION 1 : CONSOLE INPUT *
*

Entry Parameters:

Regis t e r C : 01H
.
*
*

* Returned Value : *
* Register A: ASCII Character*

The console inp ut function reads the next console character to
registe r A . Graphic characters , along with carriage return, line
feed , and backspace (ctl - H) are echoed to the console. Tab characters
(ct l - I) are expanded in columns of eight characters. A check is made
for sta rt/s top scroll (ctl - S) and start/ stop printer echo (ctl - P) .
The FOOS does not return to the calling program until a character has
bee n typed , thus suspe nding execution if a character is not ready .

* *
* FUNCTION 2 : CONSOLE OUTPUT *

*

Entry Parameters:
Register C:
Register E:

02H *
ASCII Character*

*

The ASCII cha ract e r from register E is sent to the console
device . S imilar to function 1 , tabs are expanded and checks are made
for start/s top scroll and printer echo .

(All Information Con tained Here in i s Propriet a ry to Digital Research.)

8

-•

•

•

*

* FUNC'rION 3 : READER INPUT *
*

*
*
*

Entry Parameters:
Register C:

* Returned Value :

03H
•
*
*
*

* Register A: ASCII Character•

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide ") . Control does not return until the character has
been read .

* *
* FUNCTION 4 : PUNCH OUTPUT •

*

*
* .

Entry Parameters:
Register C:
Register E:

04H *
ASCII Character*

The Punch Output function sends the character from register E to
the logical punch device.

* FUNCTION 5 : LIST OU'l'PU'£
*
*
*

*
*
*
*

Entry Parameters:
Register C :
Register E:

•
05H *
ASCII Character*

The List Output function sends the ASCII character in register E
to the logical listing device •

(All Information Contained Herein is Proprietary to Digital Research.)

9

*

* FUNC'rION 6: DIRECT CONSOLE I / 0 *
*

*
*
*
*
*
*
*

Entry Parameters:
Register C:
Register E:

Returned Value :
Register A:

0 6H *
0FFH (input) or •
char (output) •

char or status
(no value)

*
* • •

•••••••••••••••••••••••••••••••••••••••
Direct console I/0 is supported under CP/M for those specialized

applications where unadorned console input and output is required.
Use of this function should , in general , be avoided since it bypasses
all of CP/ M' s normal control character functions (e . g. , control-S and
control- Pl . Programs whi~h perform direct I/0 through the BIOS under
previous releases of CP/M , however , should be changed to use direct
I/0 under BOOS so that they can be fully supported under future
releases of MP/ Mand CP/M .

Upon entry to function 6 , register E either contains hexadecimal
FF , denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A= 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in Eis not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research .)

10

l,:i .

•

•

•••••••••••••••••••••••••••••••••••••••
*

* FUNCTION 7: GET 1/0 BY'l'E
•

•
•

•**************************************

•
*

Entry Parameters:
Register C: 07H

*
*
*

• Returned Value: *
• Register A: I/0 Byte Value *
•••••••••••••••••••••••••••••••••••••••

The Get I/0 Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

• ••••••••••••••••••••••••••••••••••••••
* *
* FUNC'rION 8: SET I/0 BYTE
*

•
* •••••••••••••••••••••••••••••••••••••••

•
•
* •

Entry Parameters
Register C
Register E

08H
I/0 Byte Value

* •
*
*

The Set I/0 Byte function changes the
that given in register E •

•••••••••••••••••••••••••••••••••••••••
*
* FUNC'rION 9: PRINT STRING
•

*
*
* •••••••••••••••••••••••••••••••••••••••

* •
•
*

Entry Parameters:
Register C:
Registers DE:

0 91!
String Address

* •
*
* •••••••••••••••••••••••••••••••••••••••

system IOBYTE value to

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a " $"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo .

(All Information Contained Herein is Proprietary to Digital Research.)

11

•
•
•

FUNCTI ON 1 0 : READ CONSOLE BUFF ER
•
•
•

•
•
•

Entry Parame t e rs:
Register C: 0AH
Registers DE: Bu ffer Address

•
•
• •

• Re turned Value: •
• Conso l e Characters in Buffer •
**********************••···············

The Read Buffer function reads a line of edited console input
i nto a buffer addressed by registers DE . Console input is terminated
whe n e ither th e input buff e r overflows . The Read Buffer takes the
fo rm:

DE : +0 +l +2 +3 +4 +5 +6 +7 +8 +n

lmx l ncl cl lc 2 lc3lc4 lc 5lc61c71 l? ?I

whe r e "mx" i s the maximum number of characters which the buffer will
hold (1 to 25~ , "nc " is the number of characters read (set by FDOS
upon r e turn) , fo llowed by the characters read from the console. if nc
< mx , then uninitialized positions follow the last character , denoted
by " ?? " in the above figure . A number of control functions are
r ecognized du r ing line editing:

rub/ de !
ctl - C
ctl - E
c tl - H
c tl-J
c tl - M
c tl- R
ctl- U
ctl- x

r emoves and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character pos ition
(line f eed) terminates input line
(r e turn) t e rminates input line
r e types the current line after new line
removes currnt line after new line
backspaces to beginning of current line

Not e al so that ce rtain f unct ions which return the carriage to th e
l e ftmost pos ition (e. g . , c tl- X) do s o only t o th e column pos i ti on
where t he pr ompt e nded (in earlier releases , the carriage returned t o
the extreme l e ft margin) . This convention makes ope rator data input
and l ine correction more l eg ible.

(All I nf o rmati on Contained He r e in is Pr opr i e tary t o Digital Resear ch.)

12

•

•

•

• ••••••••••••••••••••••••••••••••••••••
•
•
•

FUNCTION 11: GET CONSOLE STATUS
•
•
•

•••••••••••••••••••••••••••••••••••••••
• Entry Parameters:
• Register C: 0BH
•

•
•
•

• Returned Value: •
• Register A: Console Status •
•••••••••••••••••••••••••••••••••••• •••

The Console Status function checks to see if a character has
be en typed at the console. If a character is ready , the value 0FFH is
returned in register A. Otherwise a 00H value is returned •

•••••••••••••••••••••••••••••••••••••••
•

* FUNCTION 1 2: RETURN VERSION NUMBER*
• •
******************************** *******
•
•
•

Entry Parameters:
Register C: 0CH

•
* •

* Returned Value: *
• Registers HL: Version Number *
*********************••····· · ··········

Function 12 provides information which allows version
independent programming . A two-byte value is returned, with H = 00
designating the CP/ M release (H = 01 for MP/ M) , and L = 00 for all
releases previous to 2.0. CP/ M 2 . 0 returns a hexadecimal 20 in
register L, with subsequent version 2 rel eases in the hexadecimal
range 21 , 22 , through 2F. using function 12, for example , you c an
write appl ication programs which provide both seque nt i a l and random
access functions , with Yandan access d isabled when operating under
early releases of CP/ M •

(All Information· contained Herein is Propr i etary to Dig ital Research .)

13

-~*************************************

FUNCTION 13: RESET DISK SYSTEM
*
*

• *

*
*
*

Entry Parameters:
Register C: 0DH

*
*
*

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(s ee functions 28 and 29), only disk drive A is selected , and th~
default OMA address , is reset to BOOT+0080H. This function can _be
used , for example , by an application program which requires a disk
change without a system reboot.

*
* FUNCTION 14: SELECT DISK

*
*
*

*
*
*
*

Entry Parameters:
Register C: 0EH
Register E: Selected Disk

*
*
*
*

Th e Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= 0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive Pin a full sixteen drive system . The drive is placed in an
"on-line• status which, in particular, activates its directory until
the next cold start, warm start , or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/ only status in a standard CP/M environment (see
function 28) . FCB's which specify drive code zero (dr = 00H)
autanatically reference the currently selected default drive . Drive
code values between l and 16 , however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research .)

14

-

•

*******••······························
• •
• FUNCTION 1S: OPEN FILE • • •
•••••••••••••••••••••••••••••••••••••••
• Entry Parameters •
• Register C 0FH •
• Registers OE FCB Address •
* •
• Returned Value: •
• Register A: Directory Code •

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FOOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by OE (byte sl is
autanatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no question
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element is matched , the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed . Upon return , the open function
returns a "directory code" with the value 0 through 3 if the open was
successful, or 0FFH (255 decimal) if the file cannot be found. I f
question marks occur in the FCB then the first matching FCB is
actival:ed1 No,o hhat th& cutten~ uc:Otcl t"c~"l ~UH In utoed by the
progrc111 if the file is to be accessed sequentially from the first
record.

(All Information Contained Herein is Proprietary to Digital Research.)

15

*********•**********•***************••·
•
•
•

FUNCTION 16 : CLOSE FILE
•
•
•

******•*•**********************••······
•
•
•
•

Entry Parameters:
Register C:
Registers DE:

10H
FCB Address

* •
•
*

• Returned Value: *
• Register A: Directory Code *

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory . The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2 , or 3 , while a 0FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred , however, the close operation is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research .)

16

-

•

• ••••••••••••••••••••••••••••••••••••••
* •

*
*

FUNCTION 17: SEARCH FOR FIRST *
* •••••••••••••••••••••••••••••••••••••••

• Entry Parameters: *
• Register c: llH *
• Registers DE: FCB Address *
* *
• Returned Value : •
* Register A: Directory Code •
******••·······························

Search First scans the directory for a match with the file given
by the FCB, addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current OMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e. ,
rotate the A register left 5 bits, or ADD A five times) . Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl " through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive . If the
"dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched , with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark ,
the "s2" byte is automatically zeroed •

•••••••••••••••••••••••••••••••••••••••
•
* FUNCTION 18: SEARCH FOR NEXT
*

* •
•

•••••••••••••••••••••••••••••••••••••••
• Entry Parameters:
! Register C: 12H

• Returned Value:

•
• •
•

• Register· A: Directory Code •

················~······················
The Search Next function is similar to the Search First

function , except that the directory scan continues from the last
matched entry. Similar to function 17, function 16 returns the
decimal value 255 in A when no more directory items match •

(All Information Contained Herein is Proprietary to Digital Research.)

17

•
•
•

FUNCTION 19: DELETE FILE
•
*
*

• Entry Parameters: * . Regi s ter C: 13H •
• Registers DE: FCB Address * • •
• Returned Va lue: • • Regi s t e r A: Directory Code •
•••••••••••••••••••••••••••••••••••••••

The Delete File function removes files which match the FCB
addressed by DE . The filename and type may contain ambiguous
r e ferences (i . e ., question marks in various positions) , but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions .

Function 19 returns a decimal 255
files cannot be found , otherwise a
returned .

•
• FUNCTION 20: READ SEQUENTIAL

*
*
*

•
•
•
•

Entry Parameters:
JtegiBtH C:t
Registers DE:

14H
FCB Address

• • •
*

• Returned Value: •
Register A: Directory Code *

if the referenced file or
value in the range 0 to 3 is

Given that the FCB addressed by DE has been activated through an
open o r make function (numbers 15 and 22) , the Read Sequential
f unction reads the next 128 byte record from the file into memory at
t he current OMA address. the record is read from position "er" of the
extent, and the "er" field is automatically incremented to the next
rec ord position. If the " er " field overflows then the next logical
e xtent is automatically opened and the "er" field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful , while a non-zero
value is returned if no data exists at the next record position (e.g . ,
e nd of file occurs) .

(All Info rmation Contained Herein is Proprietary to Digital Research .)

18

•

•

•••••••••••••••••••••••••••••••••••••••
* FUNCTION 21: WRI 'rE SEQUENTIAL
*

• •
• ••••••••••••••••••••••••••••••••••••••
• Er.try Parameters: *
• Register C: 15H •
• Registers DE: FCB Address •
* •
• Returned Value: •
• Register A: Directory Code •
•••••••••••••••••••••••••••••••••••••••

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current OMA address to
the file named by the FCB. the record is placed at position "er" of
the file, and the "er" field is automatically incremented to the next
record position. If the "er" field overflows then the next logi cal
extent i~ automatically opened and the "er " field is reset to zero in
preparation for the next write operation. write operations can take
place into an existing file , in which case newly written records
overlay those which already exist in the file. Register A= 00H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full dis k •

•

* FUNCTION 22: MAKE FILE •
• * •••••••••••••••••••••••••••••••••••••••

•
•
* •

Entry Parameters:
Register C:
Registers DE :

* Returned Value:

16H
FCB Address

•
* •
•

• Register A: Directory Code •
•••••••••••••••••••••••••••••••••••••••

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if "dr" is zero). The FOOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is suffic ient if
there is any possibility of duplication. Upon return, register A = 0 ,
1 , 2, or 3 if the operation was successful and 0FFH (255 decimal) if
no more directory space is available. The make function has the
side- effect of activating the FCB and thus a subsequent open is no t
necessary .

(All Information Contained Herein is Proprietary to Digital Research .)

19

~··········~·-···~·-···················
H'NCfION 23: RENAME FI LE •

•
*••··· ~·· ·········· ···············•***·

Entry Pa r ame t e rs: •
Register C: l 7H
Reg isters DE : FCB Address

Re t urned Value : *
• Register A: Directo rv Code •

··········· ·················••*••······
The Rename function uses the FCB addressed by DE to ch~nge all

occu rrence s of the file named i n t he first 16 by t es to th e file named
1n th e s e cond 16 bytes. The drive code "dr " at position 0 is used to
se l ec t the or1ve , while the drive code fo r th e new file name at
pos itio n 16 of the FCB is assumed to be zero. Upon return , register A
i s s e t to a value between O a nd 3 if the r ename was successful , and
OFFH (2 55 decimal) i f the first file name could no t be found in the
di rect o ry scan .

•••••••••••••••••••••••••••••••••••••••
• *
•
*

FUNC'I' ION 2 4: RETURN LOG IN VECTOR *
*

*****• • ································
* En try Parameters:

Register C:
*

Retur ned Value:

18H
*
*
*
*

• Registe r s HL: Login Vector •
** ************************** ***********

The login vec tor value returned by CP/M i s a 16- bit value in HL,
where the least significant bit of L corresponds t o the first drive A,
and t he h igh orde r bit of H corresponds t o the sixteenth drive,
labe lled P. A "0" bit indicates that the d rive is not on- line , while
a " l " bit marks an drive that is actively on- line due t o an explicit
disk drive s e l ection, or an implicit drive se lect caused by a file
operation whi c h specified a non-ze ro "dr" fi e ld . Note that
compatibility is maintained with ea rlier releases , since registers A
and L c ontain th e same values upon return.

(All Information Contained Herein is Proprietary t o Digital Res earch.)

20

-~·····································
FUNCTION 2 5 : RE'l'UR N CURllENT DISK

•••••••••••••••••••••••••••••••••••••••
Ent ry t>arameters: •

• Register C: 19H •

Returned Value:
• Register A: Current Di s k
•••••••••••••••••••••••••••••••••••••••

Function 25 returns the curr e ntly selectea default disk num ber
in r egis ter A. The disk number s range from 6 thr ough 15 co rr espondi ng
to drives A th r ough P.

•••••••••••••••••••••••••••••••••••••••
*
* FUNCTION 2 6: SET DMA ADDRESS
* •
•••••••••••••••••••••••••••••••••••••••
*
*
•
*

Entry Parameters
Register C
Registers DE

lAH
OMA Address

•
•
*

"OMA " is an acronym for Direct Memory Address, whic h is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem . Although many computer systems use non-OMA access (i.e.,
the data is transfered through programmed I/0 operations) , the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
autanatically set to BOOT+0080H . The Set DMA function , however, can
be used to change this default value to address another area of memory
where the data records reside. Thus , the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to Digital Research.)

21

************ ***************************

FU NCT ION 27: GET ADDR(ALLOC)
•
•
•

Entry Parameters: .

Register C: lBH •
• . . Returned Value: •
• Registers HL: ALLOC Address •

An "allocation vector" is maintained in main memory for each
o n-line disk drive. various system programs use the information
pr ovided by the allocation vector to determine the amount of remaining
storage (see the STAT program), Function 27 r e tur ns t he base address
of the allocation vector for the currently selected disk drive. The
allocation information may , however , be invalid if the selected disk
has been marked read/only . Although this function is not normally
used by application programs , additional details of the allocation
vector are found in the "CP/M Alteration Guide. ·

*

• iUNCTION 28: WRITE PROTECT DISK *
*

•••••••••••••••••••••••••••••••••••••••
•
•
•

Entry Parameters:
Register C: lCH

•
*
*

•••••••••••••••••••••••••••••••••••••••
The disk write protect function provides temporary write

protection for the currently selected disk . Any attempt to write to
the disk , before the next cold or warm start operation produces the
message

Bdos Err on d: R/ 0

(All Information Contained Herein is Proprietary to Digital Research.)

22

•••••••••••••••••••••••••••••••••••••••
•

• FUNCTION 29: GET READ/ONL ~ VECTOR • . .
• •••••••••••••••••••••••••••••••••••••••

• Entry Parameters: •
• Register C: lDH *

•
• Returned Value: •
• Registers HL: R/ 0 Vector Value•
*****************••············ · ·······

Fun c tion 2Y retur ns a b it ve c tor i n registe r pa i r ~L wh i ch
i nd icates d r ives whi ch have t he t empo rary read/ on ly bit s e t . S imilar
to function 24, the least significant bit corresponds to dr ive A,
while the most significant bit corresponds to drive P, The R/ 0 b i t is
set either by an explicit call to function 28, or by the au t omatic
software mechanisms within CP/ M which detect changed disks.

•••••••••••••••••••••••••••••••••••••••
•

FUNC TION 3~ : SET FILE ATTRIB UTES * . .
•••••••••••••••••••••••••••••••••••••••
•
•
•

Entry Parame t ers:
Register C: lEH
Registers DE: •= Returned Value: *

FCB Address

* Register A: Directory Code •
•••••••••••••••••••••••••••••••••••••••

The Set File Attributes f unction a l lows p r og ramma t i c
mani pulation of permanent indicators attached t o f iles. I n
part icula r , th e R/ 0 and System attributes (tl' and t 2 ') can be se t or
reset. Th e DE pair addresses an unambiguous file name wit h the
appropriate attributes set or reset. Func tion 30 searches f o r a
ma tch, and changes the matched directory entry t o contain t he s e lected
indicators . Indicators fl' through f4' are not presently used , bu t
may be use ful f or applications pr ograms , si nce they are not invo l ve d
in t he matching process during fil e open and close operations .
Indi cators f5 ' through f8 ' and t3 ' are reserved for f u ture sys t em
expansion .

• (All I nfor matio n Contained Herein is Proprietary to Dig i tal Research.)

23

•••••• •••••••••••••••••••••••••••••••• •
•

FUNCT I ON 31: GET AODR(OI SK PARMS) •
• •
•••••••••••••••••••••••••••••••••••••••

Entry Paramete r s :
Register C: lFH

•
•
•

Return ed Valu e : •
• Regis t ers HL: DPB Addr ess •
•••••••••••••••••••••••••••••••••••••••

The address of the BIOS r es ide nt disk parameter block ia
r etur ned in HL as a r es ult of t his function call . This address can bt
used tor ei ther of two purposes. First , the disk parameter values can
be extracted for display a nd space computation purposes , o r transient
pr og ram s ca n dynamically change the values of current disk paramete rs
when th e disk environment changes, if required . Normally , applicat ion
programs will not r equire this f acility •

•••••••••••••••••••••••••••••••••••••••
•

• FU NCTION 32 : SE'r/GE'f USCR CODE •

•••••••••••••••••••••••••••••••••••••••
• Entry Parameters:
• Register C: 20H •
• Register E: 0FFH (get) or •
• User Code (set) • . •
• Returned Value: •
• Register A: Current Code or •
• (no value) •
•••••••••••••••••••••••••••••••••••••••

An application program can change or interrogate the currently
active user number by calling function 32 . It register E = 0FFH , then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31 . If register Eis not 0FFH, then
the current user number is changed to the value of E (modulo 32) .

(All Information Contained Herein is Proprietary to Digital Research.)

24

•••••••••••••••••••••••••••••••••••••••
•

• !•'UNCTION 33 : READ RAND()! • e :
• Entry Paramete r s : •
• Register C: 21H •
• Reg i s t e r s DE: FCB Address •
• •
• Re turned Valu e : •
• Reaister A: Return Code •
•••••••••••••••••••••••••••••••••••••••

The Read Ra ndom function is similar to th e sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number , selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33 , rl at 34, and r2 at 35) . Not e that the sequence
of 24 bits is stored with least sig nificant byte first (r0) , middle
byte next (rl), and high byte last (r2J . CP /M does not reference byte
r2 , except in comp uting the size of a file (function 35) . Byte r2
must be zero, howe ver, since a non-zero value indicates overflow past
the end of fil e.

Thus, the r0 , rl byte pair is treated as a double-byte , or "word"'
value, which contains the record to read . This value ranges from 0 to
65535 , providing access to any particular record of the 8 megabyte
file . In order to process a file using random access, the base extent

aextent 0) must first be opened. Although the base extent may or may
• o t contain any allocated data, this ensures that the file is properly

r ecorded in the directory , and is visible in DIR requests. The
s elec ted r ecord number is then stored into the random record field
(r0 , rl) , and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as l i sted below,
or the value 00 indi cating t he operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record . Note that contrary to the sequential read operation, the
record number is not advanced. Thus , subsequent random read
ope rations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however , that in this case, the last
rand001ly read record will be re-read as you switch from random mode to
sequential read, ~nd the la~t record will be re-written as you switch
t o a sequential write operation. You can, of cours~, simply advance
the randcrn record position following each random read or write to
obta in the effect of a sequential I/0 operation.

Error c odes returned in register A following a random read are
listed below .

• (All In formation Contained Herein is Proprietary to Digital Research.)

25

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written , or an extent wh ich
has not been created , which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be clea rea
by simply re-reading , or re-opening extent zero as long as the dis k ia
not physically write protected . Error code 06 occurs whenever byte r2
is non-zero under the current 2 . 0 release. Normally , non-zero return
codes can be treated as missing data, with zero return codea
indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)

26

--
•••••••••••••••••••••••••••••••••••••••
• FUNCTION 34: WRIT£ RANDG!
•

•
•
•

•
•
•
•

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

•
*
* •

• Returned Value: •
• Register A: Return Code *

The Write Random operation is initiated similar to the Read
RandOIII call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

•

switch as it does in sequential mode.

The error codes rei~rn•d ~ya random write are identical to the
randan read op,ratien 11e~ ~~e addition of error code es , which
indicates that a new extent cannot be created due to directory
overflow.

(All Information Contained Herein is Proprietary to Digital Research.)

27

•••••••••••••••••••••••••••••••••••••••
• •
* FUNCTI ON J S: COMPUTE FILE S I ZE •

*
**** ** **** ********* ********************
• Entry Paramete rs: •

Regi s te r C: 23H •
• Regis t e r s OE: FCB Addre s s •
• •

Retur ned Valu e : • • Random Record Fi e ld Set •
* * ****** *** ***** * ******** **************

Wh e n comput i ng th e size of a fi le , th e OE r eg i s ter pa ir
addresses a n FCB in random mode f ormat (bytes r 0, rl , and r 2 are
pres e nt) . The FCB contains an unambiguou s fi le name which is us~d in
the di r ec t o ry s can. Upon r e turn , the random r ecord bytes c o ntain t he
"virtual" f il e size which is , in effec t , the r ecord address o f t he
recor d tol l<Ming the end of the f i l e. if , f o llowing a call t o
functi on 35 , the high r e cord byte r 2 is 01 , t hen t he file con ta ins t he
maximum r ecord count 65536 . Otherwis e, by tes r 0 a nd rl const i tute a
1 6- b i t va lue (r0 is the least significant by t e, a s be fo re) whi ch is
t he fi l e size .

simply
end of

at t he

Data can be appended t o the end of an existing t ile by
c a l l i ng f unc tion 35 to set the random record pos ition to the
file , th e n pe rforming a sequence of rand om writ e s sta r ting
pre s e t re cord add ress.

The vi rtual si ze of a fil e c orres ponds to th e phys i cal s ize
t he file i s wr itte n s equentially . If , ins t ead , the f ile was c r eate
in r a nd om mode and "holes • exist in the allocation, then the file ma y
in fact c ontain fewer records than the size indicates . I f , f o r
example , only the last record of an eight megabyt e file i s written i n
random mod e (i. e ., record number 655 35) , then the vi rtua l s i ze is
6553 6 r ecords , although only on e block of data i s ac t ual l y a lloc a ted .

(All I nfo rmation Contained He rei n i s Propri e tary t o Digi tal Research .)

28

--
•••••••••••••••••••••••••••••••••••••••
• •

FUNCTION 3 6: SET RANDO! RECORD • • •
•······································· • Entry Parameters: *

• Register C: 24H •
• Registers OE: FCB Address *

•
•

Returned Value :
Random Record Field Set

•
•
•

The Set Random Record function causes the
produce the random record position from a file
written sequentially to a particular point.
us e f ul in two ways.

BOOS to automatically
wh ich has bee n r ead or
The function can be

First, it is often necessary t o initially read a nd s can a
sequential file to extract the positions of various "key " fields . As
each key is encountered , funct i on 36 is cal led t o compute the random
record position for the data corresponding to this key . I f the data
un i t size is 128 bytes , the resulting record position is placed into a
table with the key f o r later retrieval . After scanning the entire
file and tabularizing the keys and their record num bers , you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier •
The scheme is easily generalized when variable record lengths are

•

involved since the program need only store the buffer-relative byt e
posi t ion along with the key and record number in order to find the
e xa c t starting position of the keyed data at a later time .

A second use of function 36 occurs when switching f r om a
s equential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file , function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the fil e .

(All Information Contained Herein is Proprietary to Digital Research.)

29

r

I

3 . A SAMPLE FILE-TO-FILE COPY PROGRAM ,
The program shown below provides a relatively simple example of

file opera tions. The program source file is created as COPY . ASM_us in~
t he CP / M ED program and then assembled using ASM or MAC , resulting i
a "HEX " file . The LOAD program is the used to produce a COPY. COM f ile
which executes directly under the CCP . The program begins by s e tt ing
the stack pointer to a local area , and then proceeds to move the
s econd name from the default area at 006CH to a 33 - byte file cont rol
b l ock c alled DFCB . The DFCB is then prepared for file operations by
c l earing the current record fie l d . At this point , the sou r ce a nd
d estination FCB ' s a r e ready for processing since the SFCB at 005C H is
properly set-up by the CCP upon entry to t he COPY program . That i s,
the f irst name is placed into the default fcb, with the proper fie lds
zeroed , including the current record field at 007CH. The progr c111
c ontinues by opening the source file, deleting a ny exising destination
file , and then creating the destinat ion file . If all this is
s uc cessful , the program loops at the label COPY until each record has
been read from the source file and placed into the destination fil e .
upon completion of the data transfer, the destination f ile is c l osed
and the program returns to the CCP command level by jumping t o BOOT.

sample file-to-file copy program

at the ccp level, the command

copy a:x . y b:u.v

~6Pill thl !ii~ ~&ffll4 l,Y !ro~ drive
a to a file named u . v on drive b ,

' 0000 = boot equ 0000h system r eboot

0005 = bdos eq u 0005h bdos entry point

005C = fcbl equ 005ch first file name

005c = sfcb equ fcbl source fcb

006c = fcb2 equ 006ch s econd file name

0080 = dbuf f equ 0080h default bu ffer

0100 = tpa equ 0100h beg inn ing of tpa

.
0009 = pri nt f equ 9 print buffer func#

000f = openf equ 15 open file f unc#

0010 = closef eq u 16 close file func#

0013 = deletef equ 19 delete fi l e func#

0014 = readf equ 20 seq uential r ead

0015 = writef equ 21 sequential write

0016 = makef equ 22 make file fund

0100 org tpa beginning of tpa

0100 3llb0 2 lxi sp,stack; local stack

move second fil e name to dfcb

0103 0el0 mvi c , 16 ; half an fcl:>

(All Information Conta ined Herein i s Proprietary to Dig i tal Resea r ch.)

30

-

•

•

•

010 5 l l 6c0 0
0108 2lda01
01 0b la mfc b:
010c 13
0 10d 77
010e 2 3
010f 0d
0110 c 20b0l

0113 af
0114 32f a01

0117 115c00
011a cd6901
011d 118701
0120 3c
01 21 cc6 10l

0124 llda01
0127 cd7301

012a llda01
01 2d c d82 01
0130 11 9601
0133 J c
0134 cc6lil l

0137 11 5c00 copy:
013a cd7801
013d b7
0 l3e c2 510 l

0141 l lda01
0144 cd7d01
014 7 lla 9 01
ll 14a b7
014b c 4610 1
014e c 3 3 701

0151 llda01
0 154 cd6e0 1
01 57 2 lbblll
015a 3c
01 5b c c61 01

' eof ile:

1 xi
lxi
ldax
inx
mov
inx
dcr
jnz

d, fcb2
h , dfcb
d
d
m,a
h
C
mfcb

source of move
destination fcb
source fcb
ready next
dest fcb
ready next
count 16 ••. 0
loop 16 times

name has been moved, zero er
xra a a= 00h
s t a dfcbcr ; curre nt rec= 0

source and destination fcb's ready

lxi
call
lxi
inr
CZ

d, s fcb
open
d , nofile;
a
finis

source file
error if 255
ready message
255 becomes 0
done if no file

source fi l e open, prep destination
lxi d,dfcb destination
call delete remove if present

l xi
call
lxi
inr
CZ

d,dfcb
make
d,nodir
a
finis

destination
create the file
ready message
255 becomes 0
done if no dir space

s ource fil e open, dest file open
copy until end of file on source

lxi
call
ora
jnz

not end
1 xi
call
lxi
ora
cnz
jmp

d ,sfcb
read
a
eofi l e

source
read next r ecord
end of file?
skip write if so

of file , write the record
d,dfcb destina t ion
write write record
d,space r e ady message
a 00 if write ok
finis end if so
copy loop until e of

; end of file, close destination
destination lxi d,dfcb

call c lose 255 if error

lxi h , wrprot; ready message

inr a 255 becomes 00

CZ finis shouldn't happen

copy oper a ti on complete, end

(All In fo rmation Contained Herei n i s Proprietary to Digital Research.)

31

015e llcc01

0161 0e09
0163 cd0500
0166 c30000

0169 0e0f
016b c30500

016e 0el0
0170 c30500

finis:

open:

,
close:

lxi

; write
mvi
call
jmp

d , normal; ready message

message given by de , reboot
c , printf
bdos
boot

write message
reboot system

system interface subroutines
(all return directly from bdos)

mvi c , openf
jmp bdos

mvi c , closef
jmp bdos

0173 0el3 delete: mvi c , deletef
0175 c3 0500 jmp bdos

0178 0el4 ;ead: mvi c , readf
017a c3 0 500 jmp bdos

' 017d 0el5 write: mvi c , writef
017f c30500 jmp bdos

0182 0el6 ~ake: mvi c , makef
0184 c30500 jmp bdos

console messages
0187 6e6t20fnofile: db ' no source file$ '
0196 6e6f209nodir: db ' no directory space$ '
0la9 6f7574fspace: db ' out of data space$ '
0lbb 777269Swrprot: db 'write protected?$'
~lee 636f700normal: db ' copy completes'

data areas
0lda dfcb: ds 33 destination fcb
0lfa = dfcbcr equ dfcb+3 2 current record

0lfb ds 32 16 level stack
stack:

0 21b end

Note that there are several simplifications in this particular
program . First, there are no checks for invalid fi le name s which
could , for example , contain ambiguous references. This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII question marks. A check should also be made
to ensure that the file names have , in fact, been includ ed (c heck
locations 005DH and 006DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement c ould be made by buffering
more data on each r ead operation. One could , for example , determine

(All Informa t ion Co ntained Her ein is Proprietary to Digital Resea r ch.)

32

•
the . size of ,memory by fetching FBASE from locat ion 0006H and use the
entire rema ining portion of memory for a data buffer . In this case,
the programmer simply reset s the DMA address to the next succes sive
128 byte area before each read . Upon writing to the destination fil e,
the DMA address is r ese t to the beginning of the buffe r and
incremented by 128 bytes t o the end as each record i s transferred to
the destination file •

•

• (All I nfo rmation Contained Her e in is Proprietary to Digital Research.)

33

4 . A SAMPLE FILE CUMP UTILITY.

The file durr.p program shown below is slightly more complex
the simple copy program given in the previous section •. The
program reads an input file, specified in the CCP command line , a n
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area and restores the CCP ' s stack befor e
returning directly to the CCP. Thus , the dump prograIT' does not
perform and warm start at the end of processing .

0100
11005
0001
0002 =
0009
000b
000f
0014

005c
0080

000d
000a

0 05c
005d
0065
0068
006b
007c
007d

0100 210000
0103 39

0104 221502

0107 315702

010a cdcl01
010d f e ff
010f c2lb0l

0112 llf301
0115 cd9c01
0118 c35101

DUMP program reads input file and displays hex data

bdos
cons
typef
pr1ntf
brk f
openf
readf

fcb
buff

er
lf

fcbdn
fcbfn
fcbf t
fcbrl
fcbrc
fcbcr
fcbln

org 100h
equ 0005h dos entry point
equ l read console
egu 2 type function
equ 9 buffer print entry
equ 11 ;break key function
equ 15 ;file open
equ 20 ;read function

equ Sch ;file control block address
egu 80h ;input disk buffer address

non graphic characters
egu 0dh ;carriage return
equ 0ah ; line feed

file control block definitions
equ fcb+0 ; disk name
equ fcb+l ;file name
equ fcb+9 ;disk file type (3 characters)
egu fcb+l2 ;file's current reel number
equ fcb+lS ; file ' s record count (0 to 128)
equ fcb+32 ;current (next) record number (0
equ fcb+33 ;fcb length

set up stack
lxi h , 0
dad sp
entry stack pointer in hl from the ccp
shld oldsp
set sp to local stack area (restored at finis)
lxi sp , stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file
lxi
call
jmp

not there, give error message and return
d , opnmsg
err
finis ;to return

(All Information Contained Herein is Proprietary to Digital Research.)

34

0llb 3e80
0lld 321302

210000

012 3 es
0124 cda201
0127 el
0128 da5101
012b 4 7

012c 7d
012d e60f
012f c24401

0132 cd7201

0135 cd5901

0138 0f
0139 da5101

013c 7c
013d cd8f01
0140 7d

•
0141 cd8f0l

0144 2 3
0145 3e20
0147 cd650l
014a 7 8
014b cd8f01
014e c32301

0151 cd7 201
0154 2al502
015 7 f9

0158 c 9

e5d5c5
0e 0b
cd0 500
c ldle l

openok: ;open operation
mvi a,80h

ok, set buffer index to end

gloop:

nonum:

finis:

break:

sta ibp
hl contains
lxi h,0

;set buffer pointer to 80h
next address to print

;start with 0000

h
gnb
h
finis
b,a

;save line position

;recall line position
; carry set by gnb if end file

push
call
pop
jc
mov
print
check
mov
ani
jnz
print
call

hex values
for line fold

a,l
;check low 4 bits 0fh

nonum
line number

er lf

check for break key
call break
accum lsb = 1 if character ready
rrc ;into carry
jc finis ;don't print any more

mov
call
mov
call

inx
mvi
call
mov
call
jmp

a,h
phex
a , l
phex

h
a, I I

pchar
a,b
phex
gloop

;to next line number

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call er lf
lhld oldsp
sphl
stack pointer contains ccp's stack location
ret ; to the ccp

subroutines

;check break key (actually any key will do)
push h! push d! push b; environment saved
mvi c ,brk f
cal 1 bdos
pop b! pop d! pop h; environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

016 4 c9

0165 eSd ScS
01 68 0e 0 2
016a Sf
016b cd050 0
0 16e cldl e l
0171 c9

0172 3e0a
017 4 cd6 501
01 77 3e0a
0179 cd6501
017c c9

017d e60f
0l 7f fe0a
0181 d28901

018 4 c630
0186 c38blH

pcha r:

~ r lf:

pni b :

0189 c637 pl 0 :
018b cd6 501 prn:
018e c9

01 Bf f 5
0190 0f
0191 0f
0192 0f
0193 0f
0194 cd7d0 1
0197 fl
0198 cd7d0 1
019b c9

019c 0e0 9
019e cd0500
0 l a l c9

0la2 3al302
0la5 fe80
0la7 c2b301

' phex:

e rr :

g nb:

r e t

;print a ch a racte r
pu s h h! pus h d! pu s h b; s aved
mvi c, type f
mov
call
pop b!
r e t

mvi
call
mvi
call
r e t

e , a
bdos

pop d ! pop h; r es t o red

a,c r
pchar
a , lf
pchar

;print nibbl e in reg a
0fh ;low 4 bits
10
p l0

ani
cpi
jnc
less
adi
jmp

than or equal t o 9
' 0 '
prn

greater or equal t o 10
ad i ' a ' - 10
call pcha r
ret

; p r int hex ch a r in r eg a
p ush p sw
rrc
rr c
rr c
rr c
cal l
pop
c all
r e t

pnib
psw
pnib

;print nibble

; print e rror mess age
d ,e add r esses me s sage
mvi c, print f
call bdos
r e t

; ge t
lda
cp i
jnz
r ead

next by t e
ibp
80h
g0

anothe r bu f f e r

ending with " $ "
;pr i nt buffe r

I

(All I nfo rmation Contai ned He r ei n is Propr ie t ary t o Di g ita l Resea r cu,

36

•

•

•

0laa cdce01
0 lad b7
0 lae cab30 l

0lbl 37
0lb2 c9

0 lb3 5 f
0lb4 1600
0lb6 3c
0lb7 321302

0lba 218000
0lbd 19

0 lbe 7e

0lbf b7
0 lc0 c9

0 lcl af
0lc2 327c00

0 lc5 ll 5c00
0lc8 0e0f
0lca cd0500

0lcd c9

0lce e5d5c5
0ldl ll5c00
0ld4 0el4
0ld6 cd0500
0ld9 cldlel
0 ldc c9

90 :

i

setup:

diskr:

call
ora
jz

diskr
a ;zero value if read ok
g0 ;for another byte

data , return with carry set for eof end of
stc
ret

;read the byte at buff+reg a
mov e,a ;ls byte of buffer index
mvi d , 0 ;double precision index to de
inr a ; index=index+l
sta ibp ;back to memory
pointer is incremented
save the current file address
lxi h, buff
dad d
absolute character address is in hl
mov a , m
byte is in the accumulator
ora a ; reset carry bit
ret

;set up file
open the file for input
xra a ; zero to accum
sta fcbcr ;clear current record

lxi d,fcb
mvi c , openf
call bdos
255 in accum if
ret

open error

;read disk file record
push h! push d! push b
lxi d , fcb
mvi c , readf
cal 1 bdos
pop b! pop d! pop h
ret

fixed message area
0ldd 46494c0signon: db ' file dump version 2.0$ '
0lf3 0d0a4e0opnmsg: db cr , lf ,' no input file pres ent on disk$ '

0213
0 21 5

0217

0 25 7

' ibp:
oldsp:

s tktop:

va r iable area
ds 2
ds 2

stack area
ds 64

end

;input buffer pointer
;entry sp value from ccp

;reserve 32 leve l stack

(Al l I nfo rmation Conta i ned Her e in is Proprietary t o Digital Researc h,)

37

5 . A SAMPLE RANDCM ACCESS PROGRAM .

This manual is concluded with a rather extensive, but com~lete
example of ranrian access operation. The program listed below per forms
th e simple function of reading or writing random records upon command'
from the terminal. Given that the program has been created, "
assembled , and placed into a file labelled RANDc»1.COM, the CCP leve l
command:

RANDQ,1 X.DAT

starts the test program . The program looks for a file by the name
x.DAT (i n this particular case) and , if found, proceeds to prompt the
console for input. If not found , the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input , terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an inte<?er value in the range 0 to 65535, and w, R, and O
are simple command characters corresponding to random write , random
read , and quit processing , respectively. If thew command is issued,
the RANDCJ,! program issues the prompt

type data :

The oper ator then responds by typing up to 127 characters, followed by.
a carriaqe return. RANDGl then writes the character string into the ~
X.DAT file at record n . If the R command is issued, RANDOM reads
reco rd number n and displays the string value at the console. If the
Q command is issued , the X.DAT file is closed, and the program returns
to the console command processor . In the interest of brevity , the
only error message i s

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label " ready " where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 00 80H
are used in all disk ope rations. The utility subroutines then follow,
which contain the principal input line processor , called " readc. "
This particular program shows the elements of random .iccess
processing, and can be used as the basis for further program
development .

(All Information Contained Herein is Proprietary to Digital Research .)

38

-
. 0100

0000
0005

•

0001
0002
0009
000a
000c
000f
0010
0016
0021
0022

005c
007d
007f
0080

000d
000a

0100 3lbc0

0103 0e0c
0105 cd050
01 08 fe20
0 10a d2 l 60

010d l l lb0
0110 c dda0
0113 c 3000

0116 0e0f
~118 115c0
011b cd05 0
01 le 3c
0llf c237 0

;***
;* •
; * sampl e random access pr og ram for cp/ m 2.0 *
; * •
; * **

r eboot
bdos

coninp
conout
pstring
r s tring
ver s ion
openf
closef
makef
readr
writer

fcb
ranrec
ranovf
buff

er
lf

org

egu
egu

egu
egu
egu
egu
egu
egu
egu
egu
egu
egu

egu
egu
egu
egu

egu
egu

100h

0000h
000 5h

l
2
9
10
12
15
16
22
33
34

005ch
fcb+3 3
fcb+3 5
0080h

0dh
0ah

;base of tpa

; system reboot
;bdos entry point

;console input function
;console output function
;print string until ' S '
;read console buffer
;return ver s ion number
;file open functi on
;close function
; make file function
; r e ad random
;write random

;default file control block
;random record pos ition
;high order (overflow) byte
;buffer address

;carriage return
;line feed

;***
; • *
;* load SP, set-up file for random access *
; * •
;** ***

,
ve rsok:

l xi sp ,s tack

ve r s ion 2 . 0 ?
mv i
call
cpi
jnc
bad
l x i
call
jmp

c,version
bdos
20h ;version 2.0 o r better?
versok

version, message and go back
d , badver
print
r e boot

correct version for random access
mvi c , openf ;open default fcb
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

cannot open file, so create it

~All Information Contained Herein is Proprietary to Digital Research .)

39

0122 0el6
0124 ll 5c0
0127 cd050
012a 3c
012b c2370

012e ll3a0
0131 cdda0
0134 C30 00

0137 cde50
013a 22 7d0
013d 217f0
0140 360 0
0142 feS l
0144 c25 60

0147 0el0
0149 115c0
014c cd050
014f 3c
0150 cab90
0153 c3 000

0156 fe57
0158 c2890

015b 11 4d0
01 Se cdda0
0161 0e7f
0163 21800

0166 cs
016 7 es
0168 cdc20
016b e l

mvi c , makef
lxi d , fcb
call bdos
inr a ; e rr 255 becomes zero

jnz r e ady

cannot c reate fi le , directory full
lxi d , nospace
call print
jmp reboot ; back t o ccp

;***
; * *

l oop back t o "ready" after each command *
; *
; * ;***

ready:
file is ready for processing

call
s hl d
lxi
mvi
cp i
jnz

readcom ;read next command
ranrec ;store input record#
h , ranovf
m, 0 ; clear high byte if set
' Q' ;quit?
notq

quit processing , close file
c , closef mvi

lxi d , fcb
call bdos
inr a err 255 becomes 0
jz e r ror error message , retry
jmp reboot back to ccp

; ;************** ** ***********************************
*

; *
;* end of quit command , process write
;* *
;************* **************************************
notq:

r loop:

not the quit command , random write?
cpi ' W'
jnz notw

thi s i s
lxi
call

a random write, fill buffer unt il e r
d , datmsg
print ;data prompt

mvi
lxi
; read
push
push
call
pop

c , 127 ;up t o 127 characters
h, buff ;destination

next character to buff
b ;save counter
h ;next destination
getchr ;character to a
h ;restore counter

(All Informa tion Contained Herein is Proprietary to Digital Resea r ch.)

40

l 1I e

-

01 6c cl
016d fe0d
016f ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

017a 0e22
01 7c ll 5c0
017f cd050
0182 b7
0183 c2 b90
0186 c3 370

0189 fe52
018b c2b90

018e 0e21
0190 l l 5c0
0193 cd050
0196 b7
0197 c2b90

019a cdcf0
019d 0e80
019f 21800

0 la2 7e
0 la3 2 3
0la4 e67f
0la6 ca370
0 la9 cS
0 laa e 5
0 lab f e 20
0lad d4c80
0 lb0 e l
0 lbl cl
0lb2 0d
0 l b3 c2 a20
0 l b6 c33 70

er loop:

pop b ;restore next to fill

cpi er ;end of line?

j z erloop
not end, store character
mov m, a
inx h ;next t o fill
dcr C ;counter goes down
jnz r loop ;end of buffer?

en~ of read loop , store 00
mv1 m, 0

write the record to selected record number
mvi c,writer
lxi d , fcb
call bdos
ora
jnz
jmp

a
error
ready

error code zero?
mes sage if not
for another record

,
;***

*
* ; *

;* end of write command, process read
* ; *

;***
notw:

not a write command, read record?
cpi 'R'
jnz error ;skip if not

read random record
mvi c , readr
lxi d, fcb
call bdos
ora a ;return code 00?
jnz error

read was successful, write to console
call crlf ;new line
mvi c,128 ;max 128 characters
lxi h,buff ;next to get

wloop:
mov a,m ;next character
inx h ;next to get
ani 7th ;mask parity
jz ready ;for another command if 00
push b ;save counter
push h ;save next to get
cpi ;graphic?
enc putchr ;skip output if not
pop h
pop b
dcr C ; count=count-1
jnz wloop
jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

41

0lb9 11590
0 lbc c d da0
lllbf c3370

0lc2 0e01·
0lc4 cd050
0 lc7 c~

;••········ ··· ; . .
;* end of r ead command all e rrors end-up he r e
; * ,

;••···
e rr o r :

lxi
call
jmp

d, e r rmsg
print
r eady

;••··· ; • *
;* utility subr ou tines for console i /o
; *
;••····················~····························
ge tc h r:

p utch r :

;read next c o nso le character t o a
mvi
call
r e t

c,con inp
boos

;write c haracter f r om a t o conso l e
0lc8 0e02 mvi c ,conout
0lca 5f mov e , a ; characte r to se nd
0lcb cd050 call bdos ;send charac t e r
0lce c9 r e t

er lf :
; s end carriage return line feed

0lct 3e0d mvi a, cr ;carriage retur n
0ldl cdc80 call putchr
0ld4 3e0a mvi a , lf ;line feed
0ld6 cdc80 call putchr
0ld9 c9 ret

pr int:
;print the buffer addressed by de un t i l $

0lda d5 push d
0ldb cdcf 0 call crlf
0 lde d 1 pop d ; new 1 i ne
eldf 0e09 mvi c ,ps tring
0lel cd050 call bdos ; print th e string
0le4 c 9 ret

0 le5 l l 6b0
0 leB cdda0
0 leb 0e0a
0 led 11 7a0
0 lf0 cd050

read com:
; read
lxi
call

the next comma nd line t o the conbuf
d ,pr ompt

mvi
lxi
call
command

print ; command?
c,rstring
d , conbuf
bdos ;r ead command li ne
line i s present , scan it

(All Information Contained Herein i s Pr oprieta ry to Digit a l Resea rch.)

4 2

•

•

0lf3 2 1000
0 lf6 117c0
0 lt9 la
0lfa 1 3
0Hb b7
Ute c8

0lfd d630
~Hf fe0a
0201 d2130

0204 29
0205 4d
1! 20 6 44
0 20 7 2 9
0 208 29
0209 09
0 20a 8 5
0 2 0b 6 f
020c d2f90
0 2 0f 2 4
0210 c3f90

02 13 c630
0 215 fe61
~ 21 7 dB

0 218 e65f
0 2 la c9

r e adc :

end rd :

lxi
lxi
ldax
inx
ora
rz

h , 0 ;s t a r t wit h 000 0
d, conlin; comma nd line
d ;ne xt command ch aracter
d ;to nex t comma nd posit l on
a ;cannot be e nd of comma na

not zero, numeric?
sui 1 0 •
cpi 10 ;carry i f nu me ri c
jnc e nd rd
add- in nex t digit
dad h ; * 2
mov c, l
mov b , h ;be = value * 2
dad h ; • 4
dad h ;*8
dad b ; *2 + *8 = *1 0
add l ;+digit
mov l ,a
jnc readc ;for an o ther cha r
inr h ; overfl ow
jmp r ead c ;for another char

end of read , restore value in a
adi '0' ; command
cpi 'a' ; translate ca se?
re
lower case, mask lower case bits
ani 101$llllb
r e t

;••··· ; * *
;* s tring da ta ar ea for console messaaes
; * -

;••··· badve r :
0 21b 536f7 Y db 'sorry, you need cp/m ve rsio n 2$'

nospace:
023a 4e6f29 db

datmsq :
il2 4d 5 47970 db

er rmsq:
0259 4 57272 db

p r omp t:
026b 4e657 0 db

' no directory space$ '

' t ype data: S '

'e rr o r , try again. $ '

'nex t c ommand? S'

(All Info rmation Co nta i ned Herein is Proprietary t o Digital Research.)

43

027a 21
027b
0 27c
0021

0 29c

02bc

;***
; * *
;* fixed and variable data area *
; *
;***
conbuf: db conlen ;length of console buffer
consiz: ds 1 ;resulting size after read
conlin: ds 32 ;length 32 buffer
conlen equ S- consiz

stack:
ds

end

32 ; 16 level stack

Aga in , major improvements could be made t o this particular
program to enhance its operation. In fact, with some work, this
p r og ram could evolve into a simple data base management system. One
could , for example , assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record . A program, called
GETKEY , could be developed which first reads a sequential file and
extracts a specific fi e ld defined by the operator . For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record , starting at position 10 a nd
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, alonq with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file , called LASTNAME . KEY , which is an a lphabetical
list of LASTNAME fields with their corresponding record numbers.
(This li s t is called an " inverted index " in information retrieval

par lance.)

ReniD!le the program shown above as QUERY, and massag e it a bit so
that it reads a sorted key fil e into memory. Th e command line might
arpea r as:

QUERY NAMES. DAT LASTNAME. KEY

Instead of reading a number, the QUERY program r eads an alphanumeric
string which i s a particular key to find in the NAMES . DAT ciata base.
since the LASTNAME.KEY list is sorted , you can find a particular entry
quite rapidly by performing a "binary sea rch ," simi l ar t o looking up a
name in the telephone book . That is, sta rting at both e nds of the
list, you e xamine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next sea rch.
You ' ll quickly reach the item you're looking for (in l og2(n) steps)
wh~re you'll find the corresponding record number. Fetch and di s play
this record at the console, Just as we have done in the program shown
above.

(All Information Co ntained Herein is Proprietary to Digital Research.)

44

e

..,.........

At this point you , re just getting started . w~ th a 1 i ttle more
wo rk , you can allow a fixed grouping s ize whi ch differs fr om the 128
by te record shown above . This is accompli s hed by keeping track of the
ecord number .as well as the byte offset within the record. Knowing
he group size, you randomly access the record containing the proper

g roup , offset to_the beginning of the group within the record read
s equent ially until the group size has been exha usted .

Finally , you can improve QUERY considerably by allowing boolean
expr ess ions which compute the set of reco rds which satisfy several
r ela tionships , such as a LASTNAME between HARDY and LAUREL, and _an _AGE
1ess than 45. Display all the records which fit this description.
finally, if your lists are getting too big to fit in to memory ,
randomly access your key files from t he disk as wel l. One note of
consolation after all this work: if you make it through the project ,
you'l l have no more need for this manual!

•

(All Information Contained Herein is Proprietary to Digital Research .)

45

6 . SYSTEM FUNCTION SUMMARY .

FUNC FUNCTION NAME INPUT PARAMETERS
--------------------- -----------

0
1
2
3
4
5
6
7
8
9

1 0
11
12
13
14
15
16
17
1 8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
3 5
36

System Reset
Co nsole Input
Console Output
Reader Input
Pun ch Output
List Output
Direct console I / O
Get I / O Byte
Set I / O Byte
Print String
Read Conso le Buffer
Get Console Status
Return version Number
Rese t Disk System
Select Disk
Open File
Close File
search for First
Search for Next
Delete File
Read Sequential
Write Sequential
Make Fil e
Re name File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr {Alloc)
Write Protect Disk
Get R/ O vector
Set File Attributes
Get Addr{disk parms)
Set/ Ge t User Code
Read Randall
write Randall
Compute File Size
Se t Randall Record

• Note that A L, and B

none
none
E = char
no ne
E = char
E = char
see def
none
E = IOBYTE
DE = . Buffer
DE = . Buffer
none
none
none
E = Disk Number
DE = • FCB
DE= .FCB
DE= . FCB
no ne
DE
DE
DE
DE
DE
none
none

. FCB

.FCB

. FCB

. FCB

.FCB

DE= . DMA
none
none
none
DE= . FCB
none
see def
DE= . FCB
DE= . FCB
DE= .FCB
DE= . FCB

H upon return

OUTPUT RESULTS

none
A= char
none
A= char
none
none
see def
A = IOBYTE
none
none
see def
A= 00/ FF
HL= version*
see def
see def
A= Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err code
A= Err Code
A= Dir Code
A= Dir Code
HL= Login Vect•
A = Cur Diski
none
HL= • Alloc
see def
HL= R/ O vect•
see de f
HL= . DPB
see def
A= Err Code
A = Err Code
r0 , rl. r2
r0 , rl , r 2

{All Information Contained Herein is Proprietary to Digital Resear ch.I

46

- ----- ..._.

•

-

