

~

THIS BOOK IS THE PROPERTY OF:
STA,,~-----------
PROVINC,..._ _ _ ______ _
COUNTY _________ _
PARISH __________ _
SCHOOL DISTRICT ____ _ _ _

om~~----------

ISSUED TO

1--------------------------------

Y­u-,

Book No. __ _

Enter lnfonnotlon
In spGCM

to the left as
ln1trvcted

CONDITION

ISSUED I RETURNED

PUPILS to wh- this textbaak Is luued lfflllt nat write on any -•
or -,I< any port of It In any way, canllUfflClbl• textbooks excepted.

1. TNcheu 1ho11ld •- thot tliie pvpll', no•• i1 deoriy wrlHeft ift Ink i• lhe 1poce1 obo-f'e 111
-•fl' book luued.

2. The foU-ln9 terw, ,hovkt be uMd J,. recording thti co-flllticHI of the ltook , New, Good, foir,
P'oor, aod.

~

-

A ~"i"B" Jot,P
or 00ffi'1l'iBP

'1PogP~mmi'1g
i'1 EASl(l

Thomas A. Dwyer

Michael S. Kaufman

R obert B. Davis, Editorial Adviser

HOUGHTON MIFFLIN COMPANY / BOSTON

A TLANTA DALLAS GENEVA. ILL HOPEWELL, N J. PALO ALTO

I
I

i_ 1

ABOUT THE AUTHORS
Thomas A. l>w)tr is Associate Professor of Computer Science at the University
of Pinshurgh. Pittsburgh. Pennsylvania. Dr. Dwyer has taught at the high school
level a, "ell a, in college. and is currently Director of Project SOLO. an ex­
periment in computing for secondary school systems.

Michael S. Kaufman is currently an undergrnduate at Harvard University. He
worked m Project SOLO at the llniversity of Pittsburgh and at Pittsburgh's
Taylor Allderdice High School.

EDITOR IAL ADVISER
Robert B. Davis, currently on leave from Syracuse University. has assumed the
positions of Director of the Curriculum Laborntory. Associate Director for
Education of the Computer-Based Education Research Laboratory (PLATO
Project). and Professor of Elementary Education. at the University of lllinoi, in

Urbana-Champaign.

Jf/11.\lrt11ions by Mark Kelley

CREDITS
Page 3 Digital Equipment Corporation (left) Data General Corporation (right)
Page 5 Hewlett Packard
Page 6 Digital Equipment Corporation
Page 78 Teletype Corporation

Copyright (cJ 1971 hy Houghton Mifflin Company

All ri~h1s re,erved. No part or th,, Y.ork may be reprodm:ed or
trn.n,m1tted m any form or by any mean,. electronic or mcchamc:il.
1ndudmg r,hohM.:opyin!Z and rc..:ordmg. or by any information sior­
,1i;e or retrieval ,y!llcm without pcrmi-.~ion in wrning from th!! pub­

li,hcr,

Printed in the United State, of Amem:.i

L1hrary of Congre\ 'i C.1talog Card Number: 72-4392

ISBN : O-J 9l-1471 6-6

Contents
Part 1 GETTING READY FOR THE JOURNEY

1- 1 Here's the Plan. I

1- 2 How to Recognize a Computer. 2

1-3 Getting Ready to Communicale with a

MINICOMPUTER. 6

1-4 Getting Ready to Communicate with a

TIME-SHARING COMPUTER. 7
1- 5 The BASIC Language, 10
1-6 Putting It All Together, 12
1--7 You' re On!. 13
1-8 Example of a Perfect Session. 14
1- 9 Example of a Normal Session (the Kind with Plenty of

Typing Mistakes), 16

1- 10 More Programs for You to Try. 17

Part 2 THE ECONOMY TOUR

2-1 The Basic Vocabulary of BASIC. 18
2-2 BASIC Statemenls Using the Key Words

!PRINT! and IENDI. 19
2-3 Statements Using the Key Word I LET!. 29
2-4 The !INPUT! Statement. 37
2-5 The !GOTO! Statement. 46
2-6 Statemenls Using !IF . . . THEN!; I STOP !. 52
2-7 Statements Using the Key Words !FOR! and INEXTI:

ISTEPI. 63
2-8 Storing Programs on Paper Tape. 78

Part 3 TECHNIQUES FOR THE SEASONED TRAVELER

3-1 BASIC Bulldozers. 83
3-2 Subscripted Variables: [DIMI and I REMI. 84
3-3 Two-dimensional Arrays, 93
3-4 Using ITABI in PRINT Statemenls, 97
3-5 [READ! and /DATAj Statements: [RESTOREJ, 100
3-6 Some " Library" Functions in BASIC:

ISORI. [fill. [ABSI. IRNDj. 109
3-7 !GOTO . .. OF . . . J or IPN . .. GOTO .. . I. 120
3-8 /GOS@ and [RETURN/. 123

18

83

Iii

,,

Iv

Part4 FAR AWAY PLACES

4-1
4-2
4-3
4-4
4-5

Data Analysis, 127
Nonnumeric Applications. I 32
Games and Simulations. 136
Business Applications, 141
Batch-Mode Computing, 148

Selected Answers and Hints for Exercises

Index
Summary of BASIC

126

149
154
156

1
~Biii'1E

~BScy'(OP

t~B r.JOt,P'1B)'

1-1 Here's the Plan
Our tou r of computer programming in BASIC is about to begin .
Here's a quick idea of where we are headed. how we'll get there. and
some of the more interesting things we' ll meet along the way .

This book is divided into four parts :

PART 1 w i l l te ll you a li tt le about computers and what to
expect of them . It will also show you how to get the com ­
puter ready to " talk" to you (this is sometimes called
logging in) .

PARTS 2 AND 3 form the main part of the tour. They show
you how to write computer programs. A program is a list of
instructions that makes the computer work for you, follow­
ing your wishes with great precision and speed .

PART 4 is where the fun begins . It introduces you to pro ­
fessional computer appl ications, including such things as
an airline reservation system, automated game playing , and
a program that " writes" payroll records.

A s you go through the book. you ' ll find that you are frequently
asked to stop reading, go to your computer. and try out the ideas you
have just read about. Working directly w ith a machine in this way is
called ON -LINE computing. The nice thing about ON -LINE com­
puting is that it gives you an opportunity to experiment. Even if you
make mistakes. the computer will just sit there . humming away. an
obedient robot that doesn't know whether you are a beginning stu­
dent or the world' s greatest scientist.

r
UJ
z
::;
z
0

OFF-LINE.

You ' ll recognize ON-LINE sections by seeing ON-LINE
printed in the marg in as shown here . The reason actual
computing is called " on- li ne" is that there is a d irect con­
nection between you and the computer made over a tele­
phone line, or over sim ilar wires . You ' ll see exactly how th is
is done in Sections 1-3 and 1-4.

Work which is done ll'ithout a direct connection lo a computer is
called OFF-LINE. Examples of off-line work are reading the book,
doing exercises which simula te (imita te) the action of a computer,
d rawing flow cha rts (expla ined o n pages 47 and 54). a nd punching
progra ms on paper ta pe (explained on pages 78- 82) . The best way
to lea rn computer programming is to continuall y mi x off-line prepara­
tion with 0 11-lin e computing.

ON - LINE ,~ ,
./

~

~

U)
When you are ON-LIN E , you will be communicating with the

computer in a " conversa tional" way . using a spec ial language called
BAS IC. We' ll have a lo t to say about BA SIC in this book, but let's
first find out somethi ng about compu ters.

1-2 How to Recognize a Computer

T he full name fo r the kind of computer we will stud y is " ge neral
purpose digita l computer." F rom now on we'll simply refer to such
machines as " computers," which is wha t e ve rybody does anyway.
The importa nt th ing for us-now is learning how to use a computer.

Computers come in ma ny sizes a nd shapes, but there a re two
general types you are like ly to encounter.

T he firs t of these is called a MIN I C O MP UTER s y s te m . A s you
can see from the na me, the computing pan of s uc h a sy s tem is small
in size - about a s big as the average te levis io n se t. Altho ugh the re
is so me limit o n the s ize of the proble m s tha t a " M I N I" c a n ha nd le,
it is a ble to do very sophis ticated things - inc luding a ll th e progrnm s
in thi s book .

Two M inicomputers

A s the dra wing a t the left suggests, the re a re
a t least two pa n s to a minicomputer " s y s tem"
(tha t 's wha t "sy stem" mea n s - something with
severnl pa rts). There is the box la beled MINI­
C OMPUTER a nd there is a lso a n objec t called
a TERMINAL. The terminal looks something
like a typewriter. It is the mea n s by whic h you
a nd the computer will " ta lk" o r co mmunicate
with ea ch other.

The large a rrows in the picture s h o w tha t
you communica te with the computer by typing
ins tructions on the terminal key board , while the
co mputer communicates bac k by printing infor­
ma tion on the paper in the termina l.

A minicomputer is u s ua lly located right in the
room with the person who is us ing it , a nd it is
usually contro lled with termina ls. Why did w e
say " usua lly" ? Because som e minico mpute rs a re
contro lled by dropping a deck o f s pec ially m a rked
cards into a hopper on the mach ine. I f you a re
using s uc h a syste m . your teacher will s ho w you
ho w to ma rk s uc h cards . Y o u s ho uld a lso ta ke
a look a t Section 4 -5 in this book, wh ich ta lks
a bout " ba tc h system" compute rs tha t u se c a rd input.

3

r

(

- t
t' ,;"

4

T he second type of computer that you may use is the large mac hine
tha t requires a room a ll to itself. and which may be many miles away .
Such machines can a lso be controlled with terminals. but the ter­
minals a re hardly ever in the same room as the computer. This is
no problem, since two-way communication with a computer can take
place over telephone lines. The setup looks something like thi s:

Using this arrangement , many people can s im11/ta11eously com­
munica te with a large , expensive computer. The process that makes
this possi ble is called time sharing .

How does time sharing work? Because of the tremendous speed
with which it carries out its operations, the computer can give each
person all the computing time he needs in a fraction of each minute
that he is connected to the computer. The rest of that minute can go
to the other users (by "user" we mean anyone working at an on-line
terminal). The situation is something like that of a grocery clerk
taking telephone orders from several customers at the same time. If
the clerk could switch back and forth from one telephone to another
fast enough, each customer would think he was getting the c lerk's
full attention. The computer is that fast: you think it's talking only
to you!

The picture at the top of page 5 shows the arrangement used by
some time-sharing systems. The box labeled " multiplexor" is a

~

device that squeezes several computer conversations into one
"leased" telephone line used exc lusively for computing. U sers need
only dial a local number that connects them to the multiplexor.

•
~

A Large Time-Sharing Computer

To make things clearer, let's continue this di scussion by con­
sidering the two types of computer systems separately. You need
read only the section that corresponds to your type of computer
(1- 3 for minicomputers, 1-4 for time-sharing computers) .

5

11
I.: 6

1-3 Getting Ready to Communicate with a
MINICOMPUTER

There are three things you should do:

1. Make sure (by asking someone) that the MINICOMPUTER is
turned on and ready to accept instructions written in BASIC.
(It may be necessary to " load "' someth ing called the BASIC
compiler into the computer. Th is will have to be done by
someone fam il iar with you r mach ine. That word " compiler"
is explained on page 10.)

2. Check to see if the TERMINAL is switched on (if not, turn the
knob to LINE) .

I' 1

~

M in icomputer with Terminal and Other Equipment

3. Type the letters SCA on the term inal (this is short for SCRatch :
it erases anyth ing that sti ll might be left from the last person
who used the computer) and then push the key marked
RETURN (short fo r carriage return) .

You "re now ready to type in a program. Skip to Section 1- 5.

A. BUILT-IN TELEPHONE

1-4 Getting Ready to Communicate with a
TIME-SHARING COMPUTER

You might want to glance enviously at the instructions for the mini­
computer users. They had a rnther simple explanation of how to get
the computer ready . Time-sharing users will have more things to
consider, although the process is much easier to do than to read
about. The exact steps you should follow will depend on the par­
ticular time-sharing system that you are using. and the best way to
learn is to have someone show you . The instructions that follow
should help in a general way, however.

The first thing you have to do is call up your computer. Telephones
are used with terminals in two ways. Check to see which type you
have, and then read the correct column.

1. Push the button marked ORIG .

B. TELEPHONE SEPARATE FROM
TERMINAL

2. Dial the telephone number of the com­
puter. The computer should answer with a
high-pitched Whistle.

3. Probably, you should push the FOX button
on the right side of the terminal. (There are
some systems where you shouldn't push
this button - ask to be sure.)

4. Now LOG IN as described below.

1 . Turn the knob on the terminal to LINE.
2. There should be a small box called an

ACOUSTIC COUPLER near the telephone.
Switch it ON .

3. Dial the telephone number of the com­
puter. The computer should answer with
a high-pitched whistle.

4 . Place the telephone receiver into the
coupler as shown in the diagram.

5. Now LOG IN as described below.

LOGGING IN is the process of identifying yourself to the com­
puter. This is necessary because the computer has many people
using it , and it has to know who you are in order to keep track of the work you do.

We'll show an example of logging in on one particular time-sharing
system . After reading this. you should write down the procedure for
the particular system you are using, since it may be a little different.

7

'

' , I

8

So that you can follow our discussion of logging 1n. we've
included a p icture of a terminal keyboard . It wou ld be a good
idea for you to locate the various keys as you read the rest of
this part of the book. You wi ll notice that the letters always
print as capitals. You use the SHIFT key only when you want
to type one of the symbols at the top of a key. For example. ii

you press O the 2 will print. If you hold down the SHIFT

key wh ile pressing the same key, the " w ill print .

(,\ (':'\ 0 CD ('0, (,:'\ r-\ (<'\ 0 G) 0 0 ~ ~~ 3 4 \:._}_V_:__)\.:J I l) : - ~

~ ~ C) (\ (\ G) 0 G) G) r-\ fr,\ r;:;;;;\ ~ \::J\..V \\ \..V\V T Y L I \V\.V ~ ~

C:---Q~r'\o~r'\0CDCD0~ 0 e•r.AK ~ r\ \..V\V ~ \V~ J h L ~~ .

80QG)0G)000008

The user typed th is line. H260
is his identification number ,
and BUD is his password.

The computer typed this re­
sponse. It is now ready to
accept instructions written
in BASIC.

(~PAC £ HAH)

The method of LOGG ING IN that we'll show you is that o f Time
Share Corporation in H anover. New H ampshire 03755. which offers
a time-sharing service . Since this service uses only the BAS IC
language. the LOG -IN is especially easy. Y ou simply t ype in
H ELLO- followed by your identification number. a comma. and
your password. as shown in the first line belo w. Notice that no
spaces are typed in this line. Now press the carriage RETURN key.
If you have done all this correctly , t he computer will respond by
typing a reply like the next two lines shown. On some Time Share
C orporation connections. another line giving the time is included.

HELLO-H 2 6 0 , PUD ®

·[I ·A· HELLO F ROM T SC

REACY

® means press
the RETURN key.

We've used a box with a curved line at the
bottom to indicate paper taken right off the
terminal . This is a standard symbol and wil l
be used in the rest of the book.

Since anyone can see the password once it 's typed. your teacher
may tell you to insert secret · ·control" letters in the password you
use. For example, you may be told that the p assw ord is BUP' D .
P" i s called " control P." You type it by firs t pressing the key marked
CTRL , and then (while still holding the CTRL k ey down) pressing P.
The computer will " know" y ou did this. but nothing will print o n

the page for unauthorized persons to see.

NOTES FOR USERS OF OTHER TIME-SHARING SYSTEMS

NOTE 1 : In our example of logging in, the user was the f i rst
one to type. On some time-sharing systems. the computer
types a short message (like the date) as soon as you connect
the telephone. Then it's your turn.

NOTE 2 . In our example, the computer was ready to accept
programs written in BASIC right after log-in. On systems
that offer other languages in addition to BASIC, you may
have to type the word BASIC during some part of the log- in
procedure to tell it wh ich language you are going to use.

NOT E 3 : Some time-sharing systems ask you the question
NEW OR OLD? right afte r log-in. This means that the com­
puter wants to know whether you are going to work on an
old program that is stored in its memory or write a new one.
Your teacher will tell you how to handle this.

FINAL CHECKLIST FOR TIME-SHARING USERS

1. Do you have the telephone number
for your computer?

13.

Do you have the identification number
and the password you are to use?

Do you have a sample of an actual log-in
session on your system?

Get the missing
information. _YES

Onward
and upward!

9

! ~
i

=
~

~
 -

:,

~
f

~
~

=
-

:;

-

~
:

;
'!..

. E
 "" ...
.: ""

~
~
~

==
-

~:
[

!~
i

:::
-

:.
 <

i
~
~

e
>--

-

==
i

...
,..

~

-

~

-
- ill er

-

--
=

-

<

~

.:- ,.,. ""

C

'5
'

~

~

E.
 ==

~

"7
.

1T

z >

~

D

>

n

~

n

~

D
.

:.;

.,
~

~
;:

~=

=-
~
~
~

-<
~

i
=:

.!:
.

i~

%
=

=

i
:

:- .. - =~

=--
=

"=

~,
.

~
i

i,
..;:

2:
::

%
~ ~l

[
i

i

~

-::
-x

~

j
~
~

-
"
:,

r

12

"

e STEP 1
(GETTING THE
COMPUTER
READY)

1-6 Putting It All Together

Here's a summary of how the things discussed so far go together
during an ON-LINE session. There are really four major steps in
any ON-LINE session.

If you have a Mon,
mon,computer. fol ow
the instructions in

Section 1-3

OR

If you are fi,me sharing
using tome sharing, fol­
low the instructions ,n
Section 1-4.

r - Tu j

~ \ - I_

e STEP 2
(ENTERING YOUR
BASIC PROGRAM)

I Next you type your program (inl
struct,ons) on at the terminal, _J This ,s also
using the language BASIC. The called
computer won 't carry out these I CREATING
instructions at thos time; it just l a program

e STEP 3
(RUNNING YOUR
PROGRAM)

e STEP 4
(LEAVING THE
COMPUTER)

stores them on ,ts memory.

[Now ,o" ••" '"° como"'°' <o "'"' l ('""" "w out your instructions by typing called
RUN It woll then follow your in- EXECUTING
structions and print any results. a program

! - \
!Type SCR (short [Mi1i ! Type BYE l Time sharing J
I for scratch) to I (short for gooa~yeT O n
I " erase" your program OR ~some systems you may j

from the computer 's have to type LOGOUT
memory (ask to be sure).

\ I
r Turn off the equipment of no l

one else is going to use ,t

~

LLI
z
::::;
z
0

LLI
z
::::;
z
0

LLI
z
::::;
z
0

LLI
z
::::;
z
0

LLI
z
::::;
z
0

LLI
z
::::;
z
0

LLI
z
::::;
z
0

LLI
z
::::;
z
0

1-7 You're On!

The time has come for you to try out these iJea, at a real computer
terminal. even though you have not yet learned to write your own
programs in BASIC. Follow the directions below. You can't hurt
anything; so don't be afraid to make mistakes. (T he example, in
Sections 1-8 and 1-9 illustrate some of the things that may happen. I

Step 1 Get the computer ready by following the directions in
Section 1-3 if you have a mini or Section 1-4 i f you use
time sharing.

Step 2 Type in your BASIC program. Use the example from
Section 1-5 (remember Xenon?).

If you are in the middle of a line and make a typing error,
press the RETURN key. The computer will then pri nt
??? or a message saying it found an error. Press the
RETURN key again and type the entire line over again.

NOTE . Some computer systems have additional
features for correcting errors, such as use of the
ESCape key, or certain special characters like - .
You 'll have to find out what these are on your
system from your teacher or the instruction manual
that came with your system.

Here's what you type :

I LET X = 9 ®
2 LET Y=l2 ®
3 PRU-IT "PROeLEMt" ®
4 PRINT X+Y ®
5 PRINT "PROFLFM 2" ®
6 PP.INT X•Y ®
7 END ®

® means press
the RETURN key.

In case you have made a few mistakes and would like
to be sure that you have corrected everything, just type:

LIST ®

The computer will type back all the BASIC statements
that it has stored on its memory.

If you see something you don't like in one of the state­
ments (for example, statement 3). just type it over. The
last version you type of statement 3 is what counts -
all other versions are erased.

Even though you may have put in a " revised " statement 3
after statement 7 , the computer will put statement 3 back
in order. To check this. just type LIST again

14

w
z
::::;
z
0

w
z
::::;
z
0

w
z
::::;
z
0

w z
::::;
z
0

w
z
::::;
z
0

Step 3 Now you' re ready to see the computer execute (carry out)
your i nstructions. Simply type :

P.UN ®
You can type RUN as often as you like. If you get tired of
seeing the same answers, you can change some of the
statements in your program. For example, you might
type:

I LET X=99
2 LET Y=49
P.UN

: } --
®

This changes statements
1 and 2 only; statements
3, 4 , 5, 6, and 7 are still in
the computer.

What do you think will happen?

NOTE. If you wish to delete (get rid of) some state­
ments, just type the line numbers followed by a
carriage RETURN.

EXAMPLE: If you type
3 ®
4 ®

statements 3 and 4 will be erased from your program
(forever).

Step 4 Leave the computer. If you are the last to use it for the
time being, follow Step 4 of Section 1-6.

1-8 Example of a Perfect Session

Let's first show what happens when someone follows the preceding
directions without making a single mistake (which just about 11e1·er
happens!).

NOTE · The rest of the examples in this book are shown as
run on a terminal connected to the computer of Time Share
Corporation , Hanover, New Hampshire 03755.

The details of logging in and out, the wording of error
messages (shown in the next section), and the manner of
correcting typing errors may differ slightly on other systems.
However, all the BASIC programs in this book will run on
other systems.

H ere' s our perfec t sessio n (no tice that thi s student has m ad e state­
ments 3 and 5 a lillle ••fancier"). From now on we won ' t show pres,­
ing the RETU RN key ; !his musl be done after every line t y p ed by
the user.

HELLO-(User's identification number and password)

. ;.. HELLO FROM TSC

READY

I LET X=9
2 LET Y= I 2
3 PRINT "FROE'LEl'I
4 PRINT X+Y
5 PRINT "PROBLEM
6 PRINT X*Y
7 EN[:
RU'i

J>ROa,EM~ I CSU-.>
21

I

2

PROELa,,- 2 <PRODUCT>
108

ENI::
I LET X=99
2 LET Y=49
RU'i

~a:EM- 1 < Sll,U
~
eHQ& IJ'C2 < PROVl,!!a)
C48s·1.J

~
E'YE

C St..r-1 >"

<PRODUCT>"

e o 2 - ,n ;NuTr s ~ o ,-T c:-..w s::;T [M F.i;l

~

]7 P,ogmm o,eahoo I
j 7 Prog,am "'°"""o" I

] 7 Program modification

1 Execution of the
<-- modified program

] -{Log-out]

~

~

1-9 Example of a Normal Session (the Kind with
Plenty of Typing Mistakes)

H El..L 0 - (User's identification number and password)

• A• HELLO FROM TSC

REAfff

I L ET X=9
2 L ET Y=l2
3 PRIN T "PR0BL E.1'1 I
EFROR? NO CLOSING QlX)TE

Student forgot second " .

The computer typed ERROR. On the Time Share Co r­
poration system, if a student does not see what his
error was. he types ? and presses RETURN . The com­
puter then responds with an explanation as shown .

3 PRINT " PROBLEM 1" \ Student types in statement 3 correctly.
4 PF I NT ><+Y
5 PRINT "PR0BLE!'. 2]~---, This time the student sees his error ; so he just presses
ERROR RETURN and retypes statement 5.
5 PRINT " PR0BI..Fl'I 2"
6 PINT X*Y+-----------------; The student misspelled PRINT. The
ERROR? MI SSIN-G ASSIGNMENT 0Pl RA.TO"R1 explanation is no help to a beginner; so
6 PR I N T X+Y he just checks the spelling.
7 EN I) ,------~=:::::::::=:::::;~-- -
LI ST , I Let's see what we have. I
1
2
3
4
5
6
7

LET X•9
LET Y• 12
PRINT "PROIL_EM
PRINT X+Y
PRINT "PROR.EM
PRINT X+Y
END

1" l---j All the errors have vanished !

2 " j
END
Rl'!II , I Let's try it . I
Pl'OELll'I

21
P80El..EM

108 :J i"""'"'' I
IND
PYE. , I Time to go home. I
00·2 MJNUTE"S- Q-_E TEFJ'ITNAL_ Til'2 E• ·

16

O ne last suggesti o n - i i wi ll be a good idea
10 save your first successfu l program as a g uide
for your nex t ON-L I N E sess ion .

1-10 More Programs for You to Try

T he rest of this book wi ll be devoted to the " art of p rogrammi ng " i n
the B AS I C language. H owever. you may want l o run a no ther pro­
gram or two just for the fun of it before read ing o n . H e re are two
short program s you can try . W e won ' t explain the m here a t a l l. and
w" won·1 1" 11 you w hat happens w hen they ex.,cu1e. You ' ll fi nd o ut
after you type R UN .

Program 1 I 10 PP I N T "THIS IS A COMPU T ER"
20 FO R K=l TO 4
30 PRINT "NOTHIN G CAN GO "
40 FOR J • 1 TO 3
50 PRINT "wRO N G"
60 NFXT J
70 NEXT K
RO FN D
RUN

Program 2 I 10 LET Y= 19 70
20 LFT P=200

30 PRINT "YEAR", " MILL I ON S O F PEOPL E "
40 PRINT Y, P
50 LFT Y=Y+ 5
60 LET P=l•2+ P
70 IF Y> 2 070 THEN 9 0
8 0 GOTO 40
90 EN D
RUN

Remember - you ' re no t expec ted lo understand how these p ro­
grams work (you w ill a1 the end o f Parr 2 of thi s book). T hey are
given here in case you want to try out your computer syste m and
become mo re familiar wi th using a terminal. You 'll also fi nd that the
experience will help you unders tand things a great d eal belier w h en you return lo read ing.

~ 18

2
Th~

Et~0'10ffi)'

To"P

2-1 The Basic Vocabulary of BASIC

Now that you know how to manage an ON-LINE session with your
favorite computer. we can turn our attention to showing you how to
write your own programs in BASIC. We' ll do this in Part 2 by con­
centrating on a dozen key ll'ords in the BASIC language. The
amazing thing is that you will get along very well with this small
vocabulary and be able to write interesting programs for the com­
puter. (In case you're wondering. Part 3 of the book will extend your
vocabulary to include about as many more key words.)

Each section in Part 2 will show you how to use a few key
words to make BASIC statements. And once you have
learned how to put a couple of statements together, you 'll
have a program. It's as simple as that - key words are used
to make statements, and statements are used to make
programs.

The key ll'urds that we'll study in Part 2 of this book are:

PRINT
END
LET
INPUT
GOTO
IF . . . THEN
STOP
FOR . . . (STEP)
NEXT

"

I n addition to these key words. we'll also use the three com11111111/.<

that you have already met:

LIST
RUN
SCA (SCA is short for SCRATCH)

First statement

Second statement

~

What 's the difference between a key word and a command ? A key
word is never used a lone. It 's always part of a BA SI C statement
that has some other parts to it. (We"ll soon learn what these o ther
parts are.) Commands. on the other hand, are used by them~elves.

For example, here·s a silly li11le BASIC program with two state­
ments followed by a command:

Other parts of the statement j
RF~

1n PPINT "Sl'PFRSTAP"]l--i j
•20 fND"- ___- Jr Program
FiUN ~

SUPEP.STAFi - Output

Statements are instructions to the computer. The computer stores
these instructions in its " memory." but it doesn' t e.u cut<' them (carry
them out) until you say so. You do this by typing the command
RUN . Then the computer executes all of your instructions. Any
results that it prints out after you tell it to RUN are called OUTPUT.

.. , ,....-r.- -·
i~OTE : The word READY at the top of the program shown
above is printed by most computers after you have logged in
correctly. It means that the computer is ready to accept a
BASIC program.

Most computers also print a message after you run a pro­
gram to indicate that the OUTPUT is complete (END, DONE,
RAN, and so on) . The Time Share Corporation system types
END (not shown in the print-out above).

2-2 BASIC Statements Using the Key Words
I PRINT! and I END I

Let"s look at the outline of a BASIC program that uses only two key
words: PRINT and ENO.

t l"hese are skeleton
l.!!_ASIC statements. f"-

F R I NT
PFi !N1
PR ! NT
ENI.J

......
This is going to
be our program.

The dots mean that something is missing and must be inserted in
these positions before we have real BASIC statements.

19

'

• 20

To illustrate what the missing parts of a PRINT statemen t may
be . let 's look at an example of a program with three PRINT state­
ments and one END statement :

READY

10 PRINT "DEMONSTRATION"
20 PRINT "2+2 IS"
30 PRINT 2+2
40 END
RUI

DEMON STRATI ON
2+2 IS

4

The fi rs t thing you should notice is that every BASIC statement
starts with a line 1111111her . This can be any whole number from I to
9999 (do 1101 use commas in writing large numbers for a computer).
The line numbers serve as a guide to the computer in RUNning the
program. telling it in what o r der it should carry out your instructions.

Next comes a key word. Suppose that the key word is PRINT.
What comes next?

One kind of thing that can follow PRINT is shown in statement
IO in our example:

10 P R INT " DFMON S T RATION "

I Line number (I Key l ord I ---------
One of the things you
can put after PRINT
is any message you
want, provided you
put it between quota­
tion marks.

-=--..

When you say RUN . the computer will obediently print back
whatever was typed between the quotation marks: however there
is one thing you can' t have inside the quotation marks - you can' t
have another quotation mark . I f you say , for example.

10 PRINT " THAT'S A " HOT" ISSUE"

to a computer, i t w ill not print what you want. It may not accept
the statement at all and simply print E RRO R.

T o get around
thi s limitation,
you can use
single quotation
marks as shown
at the right.

READY

10 PRINT "THAT'S A 'HOT' ISSUE"
20 END
RUN

What else can we put after PRI NT? Take a look at line 30 of
our example. In th is statement we didn "t use quotes :

30 PRINT 2 + 2

When we RUN the p rogram. the computer w ill pri nt 4 for l i ne 30 .
In o ther words, if you don' t use quo tat ion m arks, the computer wi ll
c alculate w hat's there . and then print the answer .

MORAL : If you don ' t use quotation marks, you had better
have a number or a numerical expression that can be calcu ­
lated using arithmetic . (Later on you ' ll learn to use vari ­
ables.)

,,----,"~ ~- a.a. 7-q .
(1 , ,..

~ q?- ,__~ ~ qllq * -\' 7 ~ ~ / ~-?

By now you have probably noticed the symbo ls that computer s
use for doing arithmetic :

+ means add
- means subtract
* means multiply (don ' t use x)
I means divide (you ' re not allowed to use +)

These symbo ls are also called operato r s. There i s o ne o ther operato r used by computers:

j means exponentiate

(Some computers use ** instead of j .) Don' t let that word " expo­
nentiate" worry you . All it means is repeated mult ip l icat ion . T hus,

21

RFA OY

10 PRINT 3• 4
20 FND
Rl.111

81

REA[,Y

10 PRINT 6+4
20 PRINT B-4
30 PRINT B*4
40 PRINT 8/'4
50 PRINT B•0/'4•0
60 PRINT •5•B
10 PRINT 3, 3
BO PRINT lO•ll-7•7

3j4 is shorthand for 3• 3• 3• 3. In other words. 3j4 means .. lake
the product of Jim r threes." Walch :

61
ca

I
I •C
La ,,

a
a

ac ,,

SAME

RESULT

READY

IO Pfi INT 3* 3• 3• 3
20 END
Rt.:N

61

Exercise 1 Write down the output you think a
computer would produce after it got the
signal to RUN the program shown at the left.
(This is called simulating a computer run.
It's very good practice and it can come in
very handy when you are trying to find a .. bug"
(error) in a program.)

90 PRINT 3+4-6 a1 Check your answers with those printed upside
100 PRINT 5*4+3
110 PRINT 4+3•5
120 END

22

down at the left.

NO!l

Don't feel bad if you were puzzled by statements I 00 and 110.
There is really no way to predict what

100 PRINT 5• 4+3 o r 110 PRINT 4+3• 5

will do unless you know that computer scientists once agreed that
multiplication should be done before addition in a given problem.
Thus. in line I 10 the computer will.first calculate that 3• 5 is 15, and
then add 4 to get the answer 19.

Bui suppose that ' s not what you want - then you must use paren­
theses. If you type

110 PRINT (4 + 3)• 5

then the computer must first calculate what's inside the parentheses.
This means it.first finds that 4+3 i s 7, and then it multiplies this 7 by
5 to get the answer 3 5 .

PRACTICAL RULE When asking the computer to PRINT
answers to arithmetic problems, group things together the
way you want them with parentheses. Be sure that every
left parenthesis has a matching right parenthesis.

c 11 ,-: n n o r:i CJ

When in doubt, use parentheses.
They can 't do any harm - and
they may make the difference be­
tween a right or a wrong answer.

FORMAL RULES:
(1) If there are no parentheses, the computer performs

operations by going from left to right three times. The
first time. all exponentiation operations (T or • •) are
done. The second time, • and I operations are done in
order from left to right . The third time. + and - are done
in order from left to right .

EXAMPLE: 3 + 5• 2j3- 4/2• 3 becomes 3 + 5 • 8 - 4 / 2 • 3
then 3 + 40- 6
then 37

(2) If there are parentheses, the computer looks for the
first right parenthesis, backs up to the matching left
parenthesis, and then applies rule (1) to convert every­
thing inside this inner pair of parentheses to a single
number. These parentheses are then thrown away, and
the process is repeated. If you use several pairs of paren­
theses, the computer works from the " inside" out.

EXAMPLE: ((3+5)• 3)/4 becomes (8• 3)/4
then 6

Exercise 2 Copy and complete the following :
(a) 4 + 9= _ _ ?_
(b) (4+ 9) = _ ?_. _

(c) (4 + 9)• 2 = _ _ ?_
(d) 4+(9• 2)= __ ?_
(e) (4+(9• 2))•3= _ _ ?_

(f) (4+(9• 2)) • (3+1)= _ _ ?_

(g) .5 • ((8+(9• 2))•(3+ 1))= __ ?_

N O TE: .5 is the same as
0 .5 to the computer.

Here are several different computer programs u sing PRINT.
Simulate running each of these by writing down the output you
would produce if you were a computer.

Exercise 3
Simulate running this program

10
20
30
40
so

P R INT
PRINT
PRINT
PR INT
FN D

-42+-4,,
"AND"
3• 33
"ARE Two

S ECRET A GENT s . "

.,.,

PFl'[•Y

Exercise 4

10
::>()

:io
4n
5()

6n
7 0

Simulate runn ing this program.

PRI N T "WH/\T HAF'PFN r D I N THE YEAF "
F' nINl 1000+ 776
,- F, INT " 011 "
P RI N T (5 + 200 l+(:>+ 450 l+(9* 5 l
FE! NT " OE"
P R I NT « 5 +(5 +1 f- l/l1),t ~+(2•2 ll+I
lND

Let's see what else we can do with the PRINT statement. For
one thing. we can do several problems on one line.

EXAMPLE :

10 PF.INT 9, 1,9, ::,,9,3,9 , 4,9, 5
20 END
RU:-.1

9

Zone 1

.::..._ 1 5 spaces-
'f>J> AAAAAAAAAA AAA

24

8 1 7 29 65f. I 590.09.

The computer calculated the answers to five problems for us and
printed them un I h (' same Jin,• . Notice what the comma does. When
commas are used in a PRINT stateme nt. they space the answers
into 5 pans called :ones:

Zone 2 Zone 3 Zone 4 Zone 5
729 6561 59049• 81

- 1 s spaces- - 1 s spaces - ~ 15 spaces- -12 spaces -
AAAAAAAAPAAPAA P V> AAAAAPAAAAAAAA A AM>AAAPAAPAAAA AAAAAAAAAAM

JL
r "oj P•i1<1

TVES ...
TJIVA,S.
1-,JJ. ,4

~ r

•
READY

If there are more than five items in the PRINT statement. t he
computer w ill go to the next line:

JO PR l NT 3• 3• 2• 3• 3• 3• 4, 3• 5, 3* 6, 3• 7

20 END
RUN

3

18

READY

6

21

9 12 15

Another mark of punctuation you should know about is the semi­
colon. What the semicolo n does varies somewhat fro m computer
to computer. but it i s always true t hat the semicolon leaves less
space between answers than the comma.

On the Time Share Corporation system. the semicolo n puts the
answers as close together as possible. There will be one space
between positive numbers becau se space is left for a possible negat ive
sign.

To see the difference between what a comma does and w hat a
semicolon does on this system. look at the following example .
(Your computer may do things slightly differently.)

10 PRINT
20 PRINT
30 END
RUN

971 3+4'b9•8, l/8, .. FOOT"

91; 3+4;9+5; l/8;" FOOT.. Note extra space needed.

97 7
9 7 7 7 2 • I 2 5 FOOT 72

• 125

Q UICK SUMMARY: If you want output spread out, use a
comma ; i f you want output put close together, use a semi­
colon. Of course, the comma and semicolon a re only used
when you want more than one item on the same line.

' 26

READY

10 PRINT
20 PRINT
30 PRINT
40 PRINT
50 END
RU'1

w
z
:::::;
z
0

Let's take time oul lo lry some of lhcse ideas
on a computer. Before going ON -LIN E. yo,;
probably should review the scc1ion on correcling
typing errors (page 16).

(From now on we"II give our ON-LINE pro­
grams code names for easy reference.)

Code Name: /AAITH/

Run the following program on your compuler.

·• 14 7 + 38 • .. , 14 7+ 38
5280•51" Ji"EET IN 5 MILES"
"THERE ARF."; 26•26+261" THREE-LETTER CODE NAMES•"
"COMPARISON OF" 22/ 7 AND 355-'I I 3s ", 22/ 7, 355/ I I 3

w
z
::;
:z
0

w
z
:::::;
:z
0

w
z
:::::;
:z
0

w
z
:::::;
:z
0

After you get this program to work , go on to I ARITH2/.

WARNING WARNING WARNING WARNING

Before you do the next ON-LINE program, notice that its
li ne numbers start with 100. If you had typed it in right after
/ARITH/ , the computer would have tried to put the two
programs together with statements 10 to 50 followed by
statements 100 to 150.

Do you see that if you were then to type RUN. the computer
would ignore lines 100 to 150? It wouldn 't look past the END
statement in line 50. So, even though you were trying to
RUN / ARITH2/ , all you would get would be / ARITH/ once
again .

To avoid this d ifficu lty, you must get rid of the old program
before typing in the new one. You do this by typing SCA and
pressing RETURN. To check that there is no program there,
type LIST. The computer will let you know in some way that
there is no program there . On Time Share Corporation in­
stallations, the typing would look like this :

SCR
LIST ---j END There was nothing to LIST

MORAL: SCRatch the old before bringing in the new. Check
with a LISTong .

..
u.,
z
::;
-z
0

u.,
z
::;
-z
0

w
z
::;
-z
0

w
z
::;
z
0

w
z
:::::;
z
0

w
z
:::::;
z
0

w
z
:::::;
z
0

w
z
:::::;
z
0

Code Name: /ARITH2/

RUN the fo l lowing program ; experiment with changes in it.

RE"ADY

100
I 10
I :?0
130
140
I 50
RUii

PRINT
PRINT
PRINT
PRINT
PRINT
END

"HAT SIZES IN DECIMAL Ji"ORM"
6+5/flJ6+3/4J6+7/fU 717+1/817+J/4i 7+3/8

"DRILL SIZES"
J/ 32• :;>/ 32• 3/ 32• 4/ 32• 5/ 32• 6/ 32• 7/ 32• 8/ 32
"MONE:Y AFTER rouf'LING !,J FOR I 5 DAYS s !"I 2• I 5

/o/lAY l

~
MAY

2 *_4 ..,.,_ M A Y 15

By now you are probably discouraged by the amount of typing you
have to do to get a little output . The trouble i s that you can ' t write
very interesting programs if the only key words you know are
PRINT and END. So we"II sneak in two extra key word s (FOR a nd
NEXT. which we' ll discu ss in detail later) to help m ake this on-line
session more interesting. You are n 't expecrt~d to unde rs tand u-ltat
rh ese k ey words do at thi~· ri,ne. Just type them i n as shown.

NOTE : Code names with double slashes
indicate extra on-line programs.

Code Name: //MULTABLE//

REAfY

JO
:?0
30
40
50
60
70
RUii

PRINT" MLLTIPLICATION TABLE'S FOR 10, 11, AND 12"
PRlNT " --"
PRIN1
FOR X=J TO 12

PRINT XJ"+JO="JX+JO,Xi"*ll=";X+IJ•XJ"+l2=";X+l2
:-11':XT X
fN D

NOTE : PRINT with nothing after it produces what is called
a line feed. This means that the paper " feeds"' up one extra
line. Thus, the effect of line 30 above is to put a blank line
in the OUTPUT, making it look neater.

27

,,,--
I

~ •

LErS REVIEW SECTION 2-2

e Different forms of the PRINT statement look like the foJ .

lowing:

123 PRINT 45
50 PRINT 900/450
36 PRINT " HELLO THERE "
900 PRINT 10, 10•2, 10•3, 5 i 7•3, ((16+32)/ 8) • 123
20 PRINT 3+1 : " SCORE AND "; 4+3 : " YEARS AGO"

If more than one expression is used (as in lines 900 and 20
above), the following punctuation marks are used to separate
the output:

()"- comma separates the output up to 15 spaces:

JO PRl~T "2''., "3", "4" gives

2 3 4

10 PRINT 2, 3, 4 gives (note space for sign)

2 3 4

()"- semicolon prints the outputs close together:

10 PRINT "2"1 "J"; "4"

23,4

10 FRINT 2l 31 4 gives

2 3 4

gives

e An END statement is always needed as the last line of a
program. It consists simply of a line number and END.

e RUN is the command which tells the computer to execute all
the statements in its memory . Since RUN is 1101 a statement,
it never has a line number.

e SCR means scratch . It is a command which erases the
previous program from the computer' s memory . It never has
a line number.

• LIST is a command that causes the computer to type out all
the statements it has in its memory at the present time . II
never has a line number.

~~,
' [!] ' I , F , 8'f'f7 ,
I I I L __ ...J __ _ _ __ J

2-3 Statements Using the Key Word I LET I
It's election time. and the votes for the three leading candidates have
just been tallied . Flamboyant has 8497 votes. Handsome has 7231
votes. and Moderate topped the group with 9821 votes . Here' s how
the workers al election headquarters have " stored .. thi s information
on the chalkboard in the back room .

Our picture shows three spaces or locatiom· on the board, called
F , H , and M . We can think of F. H. and Mas labels pasted on the
board. Next to each of these labels is written the number of votes
" stored" in our chalkboard memory . These numbers can, of course,
be erased at any time, and new numbers can be put in each location .

Now let's use this picture to get a feel for what goes on in com­
puter memories . We can also "store" numbers in the memory of a
computer. In order to know where these numbers are being kept.
we must also use labels for the various memory loca tions.

The LET statement in BASIC does both of these things at once .

• It gives a label to the memory location.

• It stores a number in this memory location .

For example, the statement

20 LET F = 8497

e Gives the label F to a location in the computer memory .

e Stores the number 8497 in the memory location having that
label. The number 8497 is called the , ·011tents of the memory
loca tion F .

29

30

Labels are sometimes compared to the
names on mailboxes as shown in the picture
on the right . Notice that the label is very
different from the contents of the box.

One mailbox has the label Smith, but it
contains a letter.

We might call the label Smith a variable
because the material put into the " Smith"
mailbox can vary : one day a letter, the next
day a magazine.

In a similar way, the labels used for memory locations in a com­
puter are called variables. This is because different numbers can be
stored in a computer memory location ; its contents can vary . In
BASIC, the names we use for labels are usually single letters such
as A, B, C, X, Y.

The actual memories of computers don't look like chalkboards
or mailboxes, of course. However, a person who wants to program
a computer doesn't have to know about the actual construction of t
memories, and for our purposes the chalkboard picture is better.

~ ~ ~ - 'i_!'!_l_ l
Q!] --H-tr .Jl,.;k-'t 72 31 _

lul ~.::,...,,-s y~:2/
L.::J - - -- --- - -

For one thing, we see that we can erase the number next to a label
and put in a new number. This is exactly what computers do in their
electronic memories . If we put a new number in the same locauon
as an old number, the first number is erased.

If a BASIC program says

10 LET A=4

we may imagine that the computer's
memory looks like this : 0

□
D

t;

-

READY

5 LET A=5• 5
10 PRil>IT "A •";A
15 LET A=6*6
20 PRINT "A •";A
25 END
Rm

A • 25
A • 36

If we now say

20 LET A=12

here is what the memory looks like:

The 4 is gone (forever), and a 12 is now
in its place.

0
□
□

12

In computer language, we say that memories have the
property of destructive read in ; that is, when we " read in "
the 12, we destroy the 4.

One big difference between a computer and a chalkboard
is that the computer can do arithmetic on the numbers on
the right side of a LET statement before storing the
answer in its memory (the chalkboard just stands there) .
In the statement

5 LET A=5•5

the computer first calculates 5•5 and then stores the
answer (25) in location A. The statement

15 LET A=6• 6

stores 36 in location A, wiping out the 25 .

SUGGESTION : It will help if you read LET statements from
right to lett. In the statement

5 LET A=5•5

the computer calculates what's on the right side (using
special arithmetic circuits) . It then stores the answer in
memory location A. You can imagine that the process looks
like this :

S'~ L A 1=-5~ 5

31

32

Let's apply all of thi• di~cussion by writing a program to give u,
the total vote~ in our election (the one with Flamboyant, Handsome.
and Moderate). To make life interesting, we' ll also have our program
PRINT out the perl'ent of votes that each candidate received . You
may recall that such a percent is found as follows:

Percent of votes received by a candidate
• (number of votes received/total number of

votes)• 100

This formula is used in lines 60, 70, and 80 of the following program.

REPLY

10
2(1

30
LIO
50
60
·,o
F<(1

9(1
m~

LFT f= 8 LJ9'i
LFT H=7?31
LFT l':=9'121
LFT T=F+H+M
Pnlln "1011'-L NO• O f VOTF5 r:A S T I S"J T
PF, I NT " :It FOR FLA:-IF-OYANT =";(f/Tl•I OOJ"l"
FRINT ">. FOR Hl'-NDSOMF =" l (H/Tl• IOOJ ":t."'
FF,INT " '- FOH MODF F-ATE ="l CM/Tl• IOOl ":t."'

END

TOTAL :-10• OF VOTFS C:AST I S 255Ll9
~ F Oi< FLPM BOYAN 1 = 33• 25711
% FOH HANI;SOME. = 2f'.• 3O25:I;
I FOR MODE~A1E = 3f'.•~3991

Notice that 33.2577+28.3025+38.4399= 100.0001 instead of
exactly I 00. This is because the computer rounded off its answers.
Round-off error isn't serious in this example (what's .000 1% among
friends!), but it can sometimes cause trouble if the programmer lets

it " pile up" too much.

SUMMARY OF THE THINGS THAT CAN BE USED IN A

LET STATEMENT:

10 LET X = 12
t ", 2= ~

w

[Line Number I [!<ey Wordj ~ ~ 1- ... - ·- 1

X. Y, and Ware called variables, since different numbers can
be stored in the locations they represent. The number 12 is
called a constant because it doesn't change.

In BASIC you' re allowed to use only one variable on the left
side of the equal sign (=) in a LET statement. and as manY
as you want on the right side. Constants can be used only

on the right side.

Let's watch some LET statements in action . On the left we' ll
show a BASIC program. On the right we'll "picture" what happens
inside the computer.

BASIC PROGRAM MEMORY

READY 0 ~ @ ~
10 LET A•7 7
20 LET S- 3 3
30 LET C•A+ B 10
40 LET 0-23•C 230
50 LET 0-0-100 nooo
60 PRINT AJBlCJD
70 END
RUii

7 3 10 23000

Did you catch what happened in statement 50? The computer
worked on the right side of the statement first. calculating D • 100.
when the D location still had 230 in it from the previous step. The11
it took the answer (23000) and put it back in location D . This means
that the 230 was erased. and replaced by 23000.

Notice that the computer has an in­
exhaustible supply of constants.
You name it, and you've got it !

TT

I
I
I
I
I _,
I
I
I

33

,
I

~~~~~, 

QJ 

READY 

10 LET A= 12 
20 LET E'=8 
30 LFT El=A+E 
40 LET E2sA-B 

2-..,,,,.,. 

So far we have used single letters for variable 
names. That gave us 26 names for VARIABLES. 

NOTE: To avoid confusion between the 
letter O and the numeral zero, we will 
write zero as 0 when it is necessary to 
make a distinction. 

In BASIC you can also use a single letter 
followed by a single digit for a variable name. 
Examples are: 

A5, 87, D8, X9, Y1 , Y2, Y3, A0 

This gives us 260 additional names for variables! 

Exercise 1 Which of the following variable names are allowed 
in BASIC, and which are not allowed? 

A B ca C23 XY 2D 5F wa W13 
W2 H7 09 11 J9 IOU F-2 3 X3.1 

Exercise 2 Simulate the RUN of the following program. Copy 
and fill in the chart at the right, showing the locations of memory, 
as you proceed. 

0 ~ @] ~ [§] [!] 
12 

11 
? 

? 
? 

50 LET E3=A+B 
60 PAINT Al Bl Ell E2l E3 ? 
70 LET A=A• 10 
80 LET B=A+ B 
90 LFT \•i=A+E' 
100 PRINT Ii 
11 0 EN!' 
Rl.lN 

34 

? 

OVTPvT : 

Exercise 3 Simulate a RUN 
of the program shown at 
the right. Make a chart like 
that for Exercise 2, and fill 
in the memory locations as 
you proceed. 

? 

? 

10 LET A•3*4 
20 LET B= lO•A 
30 LET C=B/4+6 
40 PRINT AlBlC 
50 LET A•B+C 
60 PRINT A 
70 ~D -

w 
z 
:::; 
z 
0 

w 
z 
:::; 
z 
0 

Exercise 4 (One last check 
to make sure you ' re ready 
fo r the next ON-LINE ses­
sion.) Look at the " pro­
gram" shown at the right. 
In each line there is an error. 
Find each error and re­
write the lines in a form that 
makes sense. (It is impos­
sible to guess what the 
original programmer had 
in mind; so there is no one 
" right" way to correct 
each line.) 

~ .. , 

10 LET A-2=4 
20 PRIN 4 
30 LET 4=C 
40 PRINT,C,A 
50 LET C/3=6 
60 LET A=C+ 
70 PRINT AC 
80 LET 0=4 X A 
90 PRINT THE ANSWER IS D 
100 EMO 

i ii_:_ 
Code Name: /RAT1/ 

You are the program director of a national TV network, ABS 
(All-purpose Broadcasti ng System). And it's that time of year 
again ; the II Ison rat ing service reports are in, which means that 
you have to make your annual appearance before the Board of 
Directors with a list showing what percent of the audience ABS 
had for each of the " prime" hou rs (7 P.M . to 11 P.M .). 

For each t ime slot, you must provide the total number of view­
ers, the number of viewers watching ABS, and then the per­
centage of viewers watching ABS. Your meeting with the Board 
is in just half an hour. and your list of percentages still isn't ready. 
Can the computer help? Let's find out. Here·s a partial picture 

35 



r . t 

w 
z 
::::i z 
0 

w z 
::::i z 
0 

w 
z 
::::i z 
0 

w 
z 
::::i z 
0 

w z 

I 
~ 
z 
0 

w 
z 
::::i 
z 
0 

w z 
::::i 
z 
0 

w z 
::::i 
z 
0 

36 

.. 
of the computer OUTPUT you'd like. The numbers of viewers 
came from the lllson survey. 

I T~ME SLOT 
TOTAL VIE\IERS VI EWERS 01' ABS I WATCHIN G ABS 

3 1546 
36530• 
47867• 
3 5483• 

L 

3 
4 

Write a program, using a series of LET and PRINT statements 
which will output a complete chart. The formula you need lo; 
the last column in the chart is : 

Percent watching ABS = ( No. 01 viewers _of ABS) • 100 Total No. o f viewers 

Your program should fi rst PRINT headings. Then for the first 
t ime slot, here's what you might do: 

LET N= 1 
LET A= the total number of viewers 
LET B=the number of v iewers w atching ABS 
LET C={B/A)•100 

Then PRINT N, A, B , C. Now repeat the process for N=2, and so 
on. Of course, you' ll have to write statements in correct BASIC 
with l ine numbers, sticking exact ly to the rules you've seen so far. 
When you've done this and are pretty sure you r p rogram is cor­
rect, take it to the computer and RUN it. 

Code Name: //RATSTUDY// 

In o rder to make this next program more interesting, we're 
going to sneak in t he FOR and NEXT statements again without 

explanation (it's coming soon). We'll use them 
to w r ite a program that shows how the % 
rat ings o f ABS i n t ime slot 1 wo uld change for 

ca ·1:.:~--· -.. /lR'~ • ....., 

-~~ 

each extra thousand viewers added until ABS 
had 30,876 people watch ing their shows. 

The program is printed at the top of page 37. 

RUN it and see if you can figure out how it 
works. (If you can't , wait until Section 2-7). 

.fly··.\ .. -

\ 

' , 

Ill 
:% 
:::i 
% 
0 

Ill 
:% 
:::i 
% 
0 

REAU'I' 
" RATING S T UDY FO R TIM E SLOT I" 

10 PRINT "TOTAL VI E lo/ERS"1"VI Elo/E RS O F ABS"1" I WATCHING ABS" pRINT 
20 LET A•31546 
:lO L ET B•8876 
40 FOR xc t TO 2 2 
so a-s+ 1000 
60 LET <B/A) * IOOJ "I" 70 P R IN T A1B1 
SO NEXT X 
90 END 
Ru,l 

LETS REVIEW SECTION 2-3 

• The L ET statement is used to " assign a value to a variable:• 
This means that the value (number) is stored in the computer' s 
memory in a location which has a label. or " address." that is 
given by the variable' s name. For example: 

BASIC STATEMENT PICTURE OF COMPUTER MEMORY 

10 LET M= 16+ 4 r -- T -- - ---1 
L..:::J-' I r;, I 20 I 

I ~ I I 
L _ _ ..1. _ _ __ _ J 

T he value 20 is stored i n the computer's memory in a location 

I 
that has the address. or label, called M. The RIGH T side of 
the BASIC statement is calculated first. and then stored in 
the location named on the LEFT side. 

• Variable names can be single letters (A. B. C .. .. . X. Y . Z l 
or single letters followed by single digits (such as A I. B7. 
W0. X3). 

2-4 The ! INPUT I Statement 

Y ou probably found th.it your television-viewers 
program in Scc1111n 2- , consisted of many re­
peated statem~n1, hir example. for each lime 
slot. you had to h,l\e several LET statements. 
Y ou may have h.td ,omething like this: 

~ IX 

LET N =Time , lot no. 
LET t\ =Tntal v1e\\ers 
LET B = \ 1e\\cr,oft\BS 
I. ET C =I 8/A I· I 00 ('ii: watching A BS) 
PRINT ' · ·\ . H. C 

"h" ·h m~ans that a set of similar state­
ment, hau 1,, t,~ used for each time slot. Well . 
that', 11<11 , ~n g,,,,d programming . 

37 



I .cl', ,cc if we can write a better program. We' ll keep A, B. •nd C 
meaning the ,amc things a, li,tcd on page 37. First. le!', write the 
c~,cnflal ~talcmcnh: 

30 Ll:T C - (~/A)• 100- That·s a good start . 
40 l'IIIN r A,B,C ;" % " • - We have to PAINT the answers to get OUTPUT. 
100 LND 

/ (.) /,\,'/--t.Jr" .... . ,o /,\,'IV/" l;I 

~o ter C:"1".i/4)~0o 
/,(O /tf,W, ,f,/fc_,· •o/., /,)() ~.-v, .... 

Nolf/ 
?n, 

?Lo 

Of course. this program would 
not work because it has no 
values for A and B. To give A 
and B values. we'll use a new 

kind of BASIC statement - the 
INPUT statement. 

Let's add two statements at 
the beginning of our program: 

10 INPUT A 
20 INPUT B 

Here's what a few RUNs look like: 

--
This ? is from the first 
INPUT statement. The 
computer is asking us 
to tell it what the value 
of A should be. We 
typed in 31546, and then 
pressed the RETURN 
key. 

This ? is asking for the 
value of B (from line 20). 

38 

These are the answers 
printed by line 40. 

READY 

10 INPUT A 
20 INPUT e 
30 LET C:SCB/A)*IOO 
00 PRINT A• P.- CJ ":I" 
100 END 
Ru-I 

'? 31546 
8876 
·3 1546 6876 

END ~ 
RUN ~ 

? 36530 
?9604 

36530• 9604 

fN[l ~ 
RlX'l ~ 

?47967 
? 16390 

47967• 

END 

16390 

28• 13612 

26•?907% 

34•!693l 

Let's summarize the effect of a statement like: 

10 INPUT A 
When the computer executes the program and gets to statement I 0. it 

e prints a '! and then 
e waits for you to type in a number for A . followed by a carriage 

RETURN (you 're INPUTting the number into the computer) . 

OK: that ' s the basic program in BASIC. Let' s spruce it up a bit. 
First, you know what A , B . and C stand for, the network president 

knows what they stand for. but not everyone does. So let's put in a 
few PRINT statements to clear this up. Let's also show the time slot 

numbers: 

READY 

I PRINT "TYPF. IN THE TIME SLOT NU'leER•" 

3 INPUT N 

5 
PRINT "INPUT THE TOTAL Nll'!EIER OF' VJ E'WERSI" 

10 JNPUT A 15 PRINT "TYPE IN THE Nll'IBER OF' AeS VI Elo/ERS•" 

20 INPUT El 
30 LET C•CB/A>•!OO 
35 PRINT "TIME SLOT NO•"• "TOTAL. VI EWERS"• "VI E.loERS OF' AeS"• 

36 PRINT " Z WATCH JN G ABS" 
40 PRINT N, A• B, CJ "Z" 
!00 END 
RlN 

1YPE IN THE TIME SLOT NU'IBER• 
11 
INPUT THE TOTAL NU'IBER OF' Vl EWERS I 
731546 
TYPF IN THE NUMBER OF ABS VI EWERSI 
?6676 
TIME SLOT NO• 

I 
TOTAL VJ ElolERS 

315116 
VI EWERS OF' ABS 

8876 
Z 'WATCHING ABS 
28•1367% 

N O TE : Because of the comma at the end of line 35, the com­
puter prints the OUTPUT from lines 35 a nd 36 on the same 
line. A new RUN is needed fo r the next time slot. 

l!,I z :. 
z 
0 

Code Name: / RAT2/ 

RUN the preceding p rog ram u s,ng the data for time slots 2, 3 , 
and 4 g iven ,n program / RAT1/. Section 2-3. 

39 



40 

I i:'t's lake n lo,,k 111 nnother pro!!mn, that 
llSt'S the INPUT statement . Suppose that Y<'ll'd 
like to <'1\lculnte how nmny hours II i>erson hns 
s.lept in his lifl'time \ well, why not?). L<t's 
1,ssum.- that <'V<'ryone sll't'ps about 1/3 of th, 
time- \8 hour,; out of 24). And let's taken year as 
36~ days \disreg,mling leap years). .~ \ Ill 

r.~ - I"[ t r 

Notice that the INPUT statement 
caused the computer to PRINT a ? 
and then stop. The student typed 
in the number 12 and pressed 
RETURN. 

Let's try again. 

The student typed letters in­
s tead of numerals. The computer 
doesn't understand letters; so 

1 
it typed ?? (some computers 
type messages like " ILLEGAL 

I QHARACTER" ). 

Fractions not allowed ! The com­
puter took the INPUT as 111 (!) and 
ignored the /2, giving us a very 
11V_l'QnClJ1cnswer. 

Here' s a progn1m you might use. with a samp\e RUN. 

READY 

10 PRINT "HO\! MANY YEARS OLD ARE Y0U7 " 
20 INPUT Y 
30 LET H•Y• 24• 365 
40 PRINT "HOURS LIVED", "HOURS SLEPT" 
SO PRINT H,H/3 
60 END 
RUN 

HO\! MANY YEARS OLD ARf YOU7 
·? 12 
HOURS LIVED HOURS SLEPT 

105120• 35040• 

END 
RUii 

HOW MANY YEARS 
?THIRTEEN 
?11 ~ 
HOURS LIVED 

113880• 

OLD ARE YOU? 

J This it understood•! 

HOURS SLEPT 
379 60• 

END_ ~ 
R~ 

HO\! MANY YEARS OLD ARE YOU? 
?11 1/2 
EXTRA INPUT - \!ARNING ONLY 

HOURS LIVED 
972360• 

HOURS SLEPT 
324120• 

lll 
z 
::; 
z 
0 

lll 
z 
::; 

~ 

~ 
::; 

~ 

Let's try again. 

HOW MANY YEARS OLD ARE YOU? 
~ -----r? ll•5 

HOURS LIVED HOURS SL EPT 
100740° 33580. 

ENr> 

ThiS worked. Moral : you must use either whole 
ournbers or decimals for INPUT - neve.r use 
rractoons as INPUT. 

SPECIAL TRICK To put the INPUT ? at the end of the ques­
tion being asked, end the PRINT statement which comes just 
ahead of the INPUT statement with a : as shown here: 

.------, Don't put any ? mark here. 
,-10::-:P::R::I::N::T::-'.';;:'H;-;0;:-::W:-;:M;:Al;-;;N:;;Y::;-~Y~EA:::-;R:;-S;:-;;0:;-L--;D;;-A;;-;;R-;:E:-:-Y;;O::-;U;:,:;,:-,; 

RIN 
4----1 Put a ; after the last ". 

11011 MANY YEARS OLD ARE YOU? 14 
HOURS LIVED HOUR S SLEPT This is the INPUT ?. 

122640 • 40880-

R£A0y 

to PRINT '"Ho 1,/ 
20 lNPt.JT Y 
30 PRINT "YOU 
'Ill btl) 
ll\ltl 

Code Name: / SLEEP/ 
RUN the preceding program for Y= 10. 20. 30. -io. 50. 60. Com­
pare the results for 10 and 30 and lor 20 and 60. What do you 
d iscover? 

Try the prog ram fo r a variety of ages. ncludrng ages like 12.75 
(which means 12 3/ 4 years or 12 years and 9 months old). 

Code Name: / RETIRE/ 

RUN the following program for a variety of values for Y. 

MANY Y EARS OL D ARE. YOu": 

CAN RETI R E IN"; 6 5-y;" "YEA hS•" 

Notice the space between ·· 
and YEARS. If we hadn't 
put ,t there, the Y in YEARS 
would be right next to the 
preceding numeral. 

41 



~ ~ 
We can use an IN PUT statement for severnl variables St d 

· u Y thi1: 
.----------------
\ READY 

10 PRINT "TYPE IN THE NO• OF NICKELS, DIMES, AND 
20 INPUT N, [', Q 

30 Pl<INT ''YOU HAVE"J•05•N•• l•D+•2S,.QJ" OOLLARS•" 
40 END 
R~ 

QUARTERS YOU HAVE1" 

TYPE IN THE NO• OF NICKELS, DIMES, ANt, QUARTERS YOU HAVEi 
•? 3, 5, 4 
YOU HAVE 1•65 DOLLARS• 

Notice that we type in three numbers 
separated by commas to match line 20. 

The computer stores the first number in N , the 
second number in D. and the third number 
in Q : 

42 

~ -I------

~ - £ ---- --

~ -f-----

R~ 

In statement 30 it calculates the 
dollars you have as shown at the 
right and then PRINTS the result 
on the terminal. 

.05•3= .15 

.10•5= .50 

.25•4=1.00 
1.65+-0UTPUT 

If you forget to type in all the numbers asked tor by the 
program, the computer may keep asking(??) until you do: 

TYPE IN THE NO• OF NICKELS• DIMES, AND QUARTERS YOU HAVEi 
?3 
.715, 4 
YOU HAVE 1•65 OOLLARS• 

w z 
:;; 
z 
0 

Code Name: / MONEY/ 

RUN the preceding program with different values for N, o, a. 

Code Name: / SUMPRODI 

Write and RUN a program that will find both the sum and the 
product of 4 numbers. Use a statement like: 

20 INPUT W,X,Y,Z _., _.i{r 

SPECIAL INFORMATION ABOUT LARGE NUMBERS 

Look at the following program and printout: 

READY 

10 PRINT 30•40•100000 
20 END 
RUN 

What does I .20000E+08 mean? It's computer "scientific notation" 
for I 20.000,000 (that's one hundred twenty million). Scientific 
notation is a shorthand for very large (or very small) numbers. Let's 

see how it works. First recall that 

10'=10x 10=100, 10'= 10x 10x 10=1000, and so on . 

This means that 

1.2x102 =120, 1.2x 10'=1200, and so on. 

We can thus see that multiplying I .2x 103 is the same as moving the 

decimal point three places to the right: 

1.2X 1 O'= 1200. 
~ 

In the same way, l.2X 10"= 120000000. Now you can probably see 
how scientific notation works: 

1.20000E+08 means 1.2oooox 10", which means 

120000000. 

In other words. since a computer can't print 10
8 

on a terminal. it 

uses E+08 to mean x 10". 
The number 8 is called an expm1e11t. and £+011 means " time, to 

with the exponent positive 8." (The largest possible exponent on 

the Time Share Corporation system i, + ~K.l 

RULE: E+ 10 means " move the decimal point 10 places to 

the r ight." 

EXERCISES 

Find the missing numti.:r,. 

1. (a) 5.00000E + 06~ 5000000 

2. (a) 8 23000E-'- 08= 
? 

(bl a.ooo.ooo=-1-

(bl 27.000,000=2.70000E- ?_ 

3. (a) 1.23000E+ 11 = ? 
(b) 2,234.000=2.23400E- ?_ 

43 



\ 

·i 

~-

SPECIAL INFORMATION ABOUT S MALL NUMBERS 

Look at the following programt and output: 

READY 

10 PRINT CCl/1000)/12)/5280 
20 END 
Rm 

I• 57828E-08 

You can perhaps guess what l.57828E-08 means. It means 

1.57828x 1 o-•. which means .0000000157828. 

In case you haven't used negative exponents before, here's how 
they work: 

10_, _J__ 1 10- 2--
1-- 01 10-• 1 

-10-· ' - 10x 10-· 1ox1ox10: .001. 
and so on. 

This means that 

1.5x 10-1=.15, 1 .5x10- 2= .015, 1.5x 10-•=.0015, 
and so on. 

We can thus see that multiplying 1.5 x Io-• is the same as moving 1he 
decimal three places to the left: 

1,5x 10-•=.001 .5 
tcv,.J 

In our program, l.57828E-08 means 1.57828x 10-•, which means 
00000001.57828. or .0000000157828. 
~ 

RULE: E- 10 means " move the decimal point 10 places to 
the left." 

EXERCISES 

Find the missing numbers. ? 

4. (a) 1.50000E- 07- .00000015 (b) .000000732= 7.32000£_...;...-

5. (a) 3.75000E-06= _ ? _ 

6. (a) 9.82000E- 16=_ ? _ 

(b) .0000006= --1--­

(b) .00000000000015~ 

t In case you were wondering, this progmm finds oul how m"nl 
one-thousandth-of-an-inch hair is. 

w 
z 
::i 
z 
0 

EXERCISES 

Supply the missing numbers. 

7. (a) 2.00000E+09=-1.._ 
8. (a) 6.30000E+08=-1.._ 
9. (a) 3.14159E+ 11=-1.._ 

10. (a) _ ?_=7000000000 
11. (a) _ ?_=328100000000 
12. (a) _ ? _=1000000000 

(b) 2.00000E- 09=_ ? _ 
(b) 6.30000E- 08=-1.._ 
(b) 3.14159E- 11=-1.._ 
(b) -L=0.000000007 
(b) -L=0.0000003281 
(b) -L=0.00000001 

Code Name: / /SUPER-SLEEP/ / 

Write and RUN a program that prints the number of hours, 
minutes, and seconds that a person has slept. 

Challenge: Can you use your program to find out how old a per­
son has to be in order to have slept a million seconds? a billion seconds? 

LErs REVIEW SECTION 2-4 

• The statement 

20 INPUT X 

causes the computer to stop, print a ?, and wait for you to 
type in a decimal number. Then when you press the RETURN 
key, the computer continues the program, with the number 
you typed now stored in the location X. 

• The statements 

15 PRINT " WHAT IS X" ; 
20 INPUT X 

print WHAT IS X? and wait for you lo l} pe in a number. 

• The statement 

25 INPUT W,X.Y.Z 

causes the computer to stop. pnnt a question mark, and wait 
for you to type in four numbers. ,eparated by commas. It 
puts the first number you type in W. the second in X, the lhird 
in Y, and the fourth in Z. If you don't type four numbers, it 
wi ll remind you with a double que,tion mark. 

e Very large and very , mall numbers are printed with scientific 
notation. 

EXAMPLES: 
1.34567E+08 means 134567000. 
1.34567E- 08 means .0000000134567. 

45 
I 

_J 



46 

READY 

2-5 The ~OTO] Statement 

At last - a state~ent that allows you to tell the 
computer where tt can go! 

Let's illustrate !ts use _in our second_TV-rating 
program (RA T2 in Section 2-4). We II put in a 
statement (line 50) that tells the computer to GO 
(back) TO line 10 and run the program all over 
again: 

l PRINT "TYPE IN lliE TIME SLOT N"1BER•" 
3 INPUT N 

5 PRINT "INPUT THE TOTAL NUMBER OF VIEWERSr" 
10 INPUT A 

15 PRINT "TYPE 1N THE N"1BER OF ABS VIE\IERSr" 
20 INPUT B 
30 LET C•(B/A>•lOO 

35 PRINT "TIME SLOT NO.", "TOTAL VIF.\/ERS", "VIEl.'ERS OF ABS", 
36 PRINT " l WATCHING ABS" 
40 PRINT N, A, B, Cl ":II" 
45 PRINT +-- - -, 

,O GOTO l 
100 END 

Here's the GOTO 
statement. You 
may type either 

50 GO TO 1 
or 

50 GOTO 1 

Recall that this makes the computer PRINT an empty 
line and makes the output look nicer. 

Now we don't have to continually type RUN . BUT-the com­
puter will go eternally back to line I. through line 50, back to line I. 
and so on. This program puts the computer into an "infinite loop:· 
This means that the computer will try to go through a program (or 
a part of it) forever unless it is stopped. 

BEFORE YOU RUN ANY PROGRAM HAVING AN INFINITE 
LOOP, MAKE SURE YOU KNOW HOW TO STOP THE 
" RUNNING" (EXECUTION) OF THE PROGRAM. Ask some­
one how to stop it, or read your computer manual, but make 

sure you know. 

On the T ime Share Corporation system. you stop the program 
execution by pressing and releasing the BR EA K key if the program 
is RU N ning ; if the computer has printed ? and is waiting for IN PUT. 
you must press CTR L and C at the same time and then press 
RET U RN . 

Here' s what a RUN of the preceding program would look like: 

IRtt<I 

TYPE IN THE TIME SLOT Nll'IBERI 

72 
INPUT THE TOTAL Nll'IBER OF VIF.WERSI 
736530 
TYPE IN THE Nll'IBER OF ABS VIE1i1ERS1 

'79604 
TIME SLOT NO• TOTAL VIEWERS VIElo/ERS OF ABS 

2 36530 • 9604 
S WATCHIN G AE S 
26• 2907:11 

TYPE IN THE TIME SLOT Nll'IBER r 
73 
INPUT THE TOTAL Nll'IBER OF VI EloiFRSr 
747867 
TYPE IN THE NU'!BER OF ABS VIEWERS! 

1? 16390 
'TIME SLOT NO• TOTAL VIEWERS VIEWERS OF ABS 

3 47867• 16390 
S WATCHIN G AES 

34• 2AQ7! 

ITYPE IN THE TIME SLOT Nll'IBERI 
?A 

INPUT THE TOTAL Nll'IBE - --- ~ ==::::>--c::::::::::-,-____ ___ 
7 

STOP 

The BREAK key was 
pressed here. 

See what the GOTO statement d id ? The computer went 
_t>ack to li_ne 1 and started the program over again. 

Flo..- charting is a methuJ o f ,ho\\ ,ng in what order the computer 
will RU N a program. I t u, e, , pec i.tl ,;mbols 

8 ~ ET \.. START ~ 

and a lot of arrows to create a -- map .. of what the computer will do. 

47 



L 48 

Here's a flow chart of the preceding program: 

A FLOW CHART OF THE TV-RATING PROGRAM WIT 
H Gor0 

~----, 

1 

PAINT ·'TYPE IN THE TIME SLOT NUMBER · 

Notice that the GOTO statement doesn 't 
get a box. It is shown by an arrow that 
" goes to" the right place. 

3 
INPUT N 

!i PRINT " INPUT THE TOT AL NUMBER OF VIEWERS ·• 

10 
INPUT A 

" PRINT .. TYPE IN THE NUMBER OF ABS VIEWERS ·· 

30 

20 
INPUT 8 
-----r-

LET C • (B, A) • 100 

" PRINT " TIME SLOT NO " " TOTAL VIEWERS" 
'VIEWERS OF ABS" . " ~ WATCHING ABS" 

~ 

You can see from the flow chart that the computer will never rea,h 
the END statement in this particular program, since the line abol'e iI 
represents the GOTO statement. But we still must have an END 
statement in the program. 

Flow charting is especially helpful in planning very complica1ed 
programs. since a flow chart makes it easier to follow the logic or 
sequence of the program. 

EXERCISES 

Pretend that you are a computer and RUN (on paper) each of ihN 
programs. 

1. Use 1 for A (STOP after 5 loops): 

Infinite 
loop 

10 I NPUT A 
20 PRINT A 
30 LfT A=A• I 
40 GO TO ::>O 
50 FN D 

Ill 
z 
~ 
z 
0 

w 
z 
~ 
z 
0 

Ill 
z 
-! 
z 
0 

w 
z 
:i 
i 
0 

w 
z 
:i 
i 
0 

READY 

2. Use 1, 2, and 10 for R: 

10 PRINT "PROGRAM TO FIND AREA OF A CIRCLE" 
20 PRINT "TYPE IN RADIUS" 
30 INPUT R 

40 LET A•3• 14159•R• R 
SO PRINT "AREA '" "lA 
60 GOTO 20 
70 FND 

3. What's wrong with each line of this " program" ? 

10 INPUT 4 70 INPUT F+G 
20 LET B=3A 80 LET H=" F+G" 
30 INPUT C+A 90 PRINT " H" :=H 
40 LET C=B+ A, 100 GOTO 5 
50 INPUT, D,E 110 THE END 
60 PRINT " DI E= ;D/E 

Code Name: / RAT3/ 
There is still one more thing we can do with our television pro­
gram - shorten itl One way to do this is to input several numbers 
in one step. as we did in Section 2-4. So, here's our final version: 

5 PRINT "TYPE, IN THIS ORDER1" 

6 PRINT "TIME SLOT NO., TOTAL VIE\./ERS, VI Elii:.RS OF AES" 
10 INPUT N, A, E! 
20 LET C•CB/Ah 100 

30 PRINT "TIME SLOT N0,","T01AL VIEliERS","VIE\.ERS OF APS" , 
31 PRINT " l wATCHING Al'S" 
40 PRINT N,A,P,C;"l" 
45 PRINT 
·50 GOTO 6 
100 E.'ND 
Rlt,I 

We are transferring to line 6. not 5, just 
to make the output a little shorter. 

,. _..., 

RUN this program using the information from program / RAT1 /, 
page 36. 

SPECIAL: Change line 6 to end wrth a ; and see what happens. 

49 
'9 -



, 
\ 
l 

\ 

~•I 

JI 

w z 
:::i 
z 
0 

w 
z 
=t 
z 
0 

w 
z 
=t 
z 
0 

Code Name: /IWAU// 

You are a dispatch director for TRANS WAUKEGAN AIRLINES. 
It's your job to give the pilots all the information they need for 
their flights. 

One of the things they have to know is the estimated flight time, 
that is, how long the flight is expected to take. You're getting 
tired just guessing - so - in a small step for mankind and a 
giant leap for Waukegan - you decide to use the computer. 

Write and RUN a program using the information given in the 
table on page 51 . Your program should produce OUTPUT like 
that shown below. (MPH means miles per hour.) 

RtN 

TYPE IN I 
FLIGHT NtMBER11128 
PLANE SPEED Cl'IPH>1?600 
DISTANCE CMILES>l?560 
;IND SPEED CMPH>i?-40 

~ -40 means a head wind hinder-
::i ing the plane's progress. 

Fl.I GHT NU'IBERt 128 
ESTIMATED Fl.I GHT TIMEI 60• MINUTES 
FUEL NEEC·EDI 9960• pO(NDS + RESERVE z 40 would mean a tail wind 

O helping the plane. 

Ill 
z 
:::; 
z 
0 

50 

TYPE IN I 
FLIGHT NUMBERS? 

Here's some flight information for Trans Waukegan Airl ines 
you can use to test your program. 

PLANE SPEED 
DISTANCE WIND SPEED 

FLIGHT NO. 

Ill 
z 
::i 
z 
0 

Ill 
z 
::i 
z 
0 

ill 
z 
::; 
z 
0 

ill z 
::; 
z 
0 

ill 
z 
::; 
z 
0 

600 mph 
126 

600 mph 381 
600 mph 513 
600 mph 125 
600 mph 120 
600 mph 630 
600 mph 819 

(miles) (mph) BOSTON-PITTSBURGH 
483 - 45 (head) WASHINGTON-LOS ANGELES 

2300 - 55 (head) DENVER-SALT LAKE CITY 
371 - 25 (head) MIAMI-NEW YORK 

1092 +38 (tail) SAN FRANCISCO-CHICAGO 
1858 +so (tail) DETROIT -SEATTLE 
1938 - 60 (head) PHILADELPHIA-
123 +30 (tail) WASHINGTON 

The speed of the plane with respect to the ground is called the 
ground speed. We are assuming that the wind is either a head 
wind or a tai l wind. If there is a tail wind, the ground speed equals 
the sum of the plane speed and the wind speed. If there is a head 
wind, you subtract the wind speed from the plane speed, or you 
do as the computer does, that is, add the negative number repre­
senting the head wind speed. 

Here are the formulas you' ll want to use: 

Ground speed in miles per minute=(Plane speed+Wind speed)/60 

Time traveled in minutes= Distance (miles)/(Ground speed in miles per minute) 

Approx. 166 pounds for each minute of flight time 

EXAMPLE 

Suppose: 

Then: 

Plane speed =600 MPH 

Wind speed =60 MPH (this means a tail wind) 

Distance=330 Miles 

Ground speed 1n miles per minute= 

(600+60)/60= 660/60= 11 Miles per minute 

Time traveled in minutes=330/11 =30 Minutes 

Fuel needed= 166•30=4980 Pounds of fuel 

51 
'9 -



f 
: \ 

J: 52 

~ 

LET'S REVIEW SECTION 2-5 

e Computers execute statements in the order that is given b 
statement line numbers. You can change this order by y 

th
e 

a GOTO statement. A GOTO statement, as the nam~s!ng 
plies, will force the computer to go to a specific state Im. 
anywhere in a program. For example: mcnt 

300 GOTO 179 

will force the computer to go from statement 300 to statem . . h . . ent 
J 79 and continue executton at t at pomt m the program. We 
say that the program brandies to statement 179. 

e Several good programming ideas have been illustrated in th 
last few pages, which we also ought to review: e 
1. Jt"s a good idea to use a PRINT statement to tell the person 

RUNning the program what the INPUT statement is 
asking for. 

2. Instead of always reRUNning a program, we can use a 
GOTO statement to cycle back to the beginning of the 
program (or to any other point). An even better technique 
will be shown later. 

3. Always label an answer. Don't just say 26.290, for example. 
Make sure it's clear whether 26.290 is the percent of 
viewers watching ABS, the weight of your dog, or whatever 
else you had in mind. 

2-6 Statements Using ! IF ... THEN l; I STOP l 
Sue is a computer programmer for the transportation department of 
her state. She has just been given her latest assignment: computer­
ize the automobile driver licensing process. Sue hardly knows where 

to begin. 
But, being logical (all computer programmers are logical). ,he 

decides the first thing the computer should do is to look at the per· 
son' s age and determine what type of license (if any) can po,,ibly 

be issued. Here is what Sue is thinking: 

First, IF the person's age is Jess than 16, THEN the compuier 

should print: 
"NO LICENSE POSSIBLE- UNDER AGE .. 

But, IF the person is 16. THEN the computer should pri_~.
1 

"JUNIOR OPERATOR'S LICEN SE POSSIBl E 
Finally. IF the person is older than I 6. TII EN the comruier 

should print: 
"OPERATOR'S LICENSE POSSIBL E°" 

Sue has set up three conditions about the applicant's age (by 
applicant we mean the person who has applied for a driver's license). 
The conditions are: 

(I) the applicant is yo11n,:er tlra11 16. or 

(2) the applicant is /6. or 

(3) the applicant is older tlra11 /6 . 

One and only one of these conditions can be true for each applicanl. 
Hence, it should be possible to program the compu1er 10 find ou1 
which fits each applicant. Let's first use Engli,h " IF"" ,entences to 
show the logical thinking needed to decide" hich ~ind of license the 
applica nt can request. 

SUPPOSE THAT AN APPLICANT IS 19 YEARS OLD 

(I ) IF the applicant is younger than 16. 
But the applicant is NOT 1<>11n~cr 1han 16. "' condition I 
is FALSE and we continue 

(2) I F the applicant is 16, . 
But the applicant i, :,.. Cl I 16 i ear, ,,Id. , o ..:ondition 2 is 
F A LSE. and we con1inuc. 

(3) IF the applicant is older than /6 . . . 
The applicant is 19 : so condition 3 is TRUE. We therefore 
decide that the applicant is eligible for a regular operator's 

license. 

53 

y 
a 

e 
ff 
e 
e 
e 

>) 

) 

J 

79 -



~ 

Hex·~ .& [\..,,. durt tlwt .ks.:nk~ ,)Ur k"gi.: 

S"" ~ t 

__ J..._ _ 

-.- ._«v:A,- s tG£ 

" oiamonc-sr ,a;ieo OC"- in a flow chart 
.s ca...ec a declSIOn box lnsioe the box 
tnere s:io-ud a:W~ be a question that 
c--1, oe allSW'efe<l yes or no 

..s ~ --~ 5 ~ ~ - 'C~~ ~: css T---A' .__ .__,~::; ~ - --- - :e, 

'°~ 

~ 

is~ ~e.s ~-.- -~~~~s 
EOI.A. ro - _cr,~ ~'!:.£ ,.- - --

"°· 
IS ~R ~ .,,.;;T OPERATO<> S . 'Cf',& 

,~-~ ~ 
NO 

- ~ ,...; s,t-q()k(i=--
~ 

Another "''ilY to describe a decision box is to f>:ly that it oom­
sponds hl a condition which is either 1me or false . Such ct'lkl!lioo, 
are described in BASIC by using the symbols <. = . or > . "'hcrt: 

A.< 16 means A is less than 16 

A=16 means A is exactly equal to 16 

A> 16 means A 1s greater than 16 

Now. look again at the flow chan. Can you think of an J+C wi 
gi,·es the answer NO for all three questions in the de.:isit,n t,."e,' 

lo other words. can you think of an age which is 11<•1 less th;in lb. •~ 
equal to 16. and also ""' greater than 16"? Of course n,,1. Thi,td:, 
us that the third decision box is not really needed. 

Exercise 1 Redraw the flow chart above so that 11 uses orll 

two decision boxes. 

. I"'"~ 
Before writing her program. Sue decided on one nwf\' im .,,,. 

ment. Instead of EN Ding the program after checking ,,nf Jr~~ 
she decided to have the program " loop" back to the t-e~•

0"'l,,, 
to avoid ha, ing an infinite loop. she put in a spe.:i3 I Je,i>'•'~HJ!II~ 

h 
- . · het,,..J 1n 

t e start ...,h,ch ""ould stop the program anyttrne > _ • •· 
Her new flo"" chart is ,hown at the top ,,f page '~-

~=-0 IS Sue's code for 
silppSlg the program. 

fA IS IIOt < 16 and A 

61101=16. then A.> 16. 

file computer comes here 
11Por.i kne 20 IF A< 16. 

The computer comes here 
~ 1Kie~IFA=16. 

lbe computer comes here 
~ hne 15 IF A=O. 

s· .,a;•· 

;i,j,._; 4-""'-ic-,,.;s ~ ---------~ . ·-
S.\..(. ;,-~ a.c~ 

• "Cl 

~ ~ " ·- ''I'S ""1~· 'C Jr>...-~ -. ~ _ , o • - --"Ill€> 'GE-...._ _, 

?.."<l 

'•S ;,,;i,,~ -OiJOo °"£'l>C:)lt1 <S "G£ • IS, - ~ ~ 

I 'CJ ~ -;a.~!Ol!-S UC(,"5£ -- ~ ...... __ _ 

Here's a Prot?rarn based on Sue·s no .. chart_ 

REAty 

3 
PRINT "TYH O <ZEFiO > TO STOP THIS fF.OLCJ!o'I.• PRINT 

PRINT "TYPE IN AfPLICA~T 'S AO::"; 
INPUT A 
I F A• 0 TlHl\l I 00 
U A<l6 THOI 80 
IF A• I 6 THOI 90 

PRINT "OPERATOR'S LICE.'1SE f'OSSl!l.E" 
GOTO 4 

PRINT ''NO LIC~SE POSSIA.E• · l.NtfR AG£" 
GOTO 4 

PRINT "JLNIOR OPEllllTOR'S LICF'I Sf rossIFL[" 
C-OTO II 

PRINT "PROGRA!-. Tfl'Jl!I.1ATEC" 
ENt 

TYPE' 0 <ZERO> TO STOF THIS PRO CF.AN• 

TYPE' IN APPLICANT'S AGfl730 
OPERATOR'S LICENSE POSSIELE 

' TYPE IN APPLICANT'S AGEl7l 6 
JU'JIOP. OPERATOR'S LICEN SE POSSIE'LE 

TYPE IN APPLICANT'S Af,E:71 '1 
NO LICENSE POSSIELE·•LNf'ER llGE 

TYPE IN APPLICANT 'S AGf17 0 
PRO GRAM TERM 1:-JA TH 

ss 

l-
e 
h 
a 
>­
ly 
a 

le 
,tt 
::e 
re 
,e 

::,.J 

) 

J 

rs 



.... 56 

,. ST ART) 

7-
PRIN''I TYPE VOUR A..GEJ 

7 
INPUT A 

' 

Herc are examples of three other kinds of condition h 
used in BASIC: 't at (an tit 

A> = 16 means A greater than 16 or A equal to 
1 A< = 16 means A less than 16 or A equal to 16 
6 

A<>16 means Anotequalto16(onsomec 
# can be used instead of < i lmputers 

The condition A > = l 8 is true if either A > l 8 or A = IR 1-1 • 

an example showing how you might use such a conditi~n ~c_s 
example also illustrates the use of the key word STOP. · his 

10 PRIN1 "lYPE YOUR Atf■" 
20 INPUT A 
30 IF A>= 18 THEN 60 
LIO PRINT "NOT E.LIUBLE TO \/OTE" 
50 STOP 

, 1s A • 18?~ PRINT ELIGIBLE 
TO VOTE __J 

c_ 1 
60 PRINT "fl. I GI BLt TO VOTE" 

I 70 END 
N01 

PRINT NOT ELIGIBLE 
TO VOTE 

- 7 
~p 
'-=--

END 

USING THE KEY WORD I STOP I 
RULE . The last statement in a BASIC program must be an 
END statement. If you wish a program to stop executing at 
any other place, use a statement with the key word STOP. 

Exercise 2 Here is a part of a program. At the top of page 57. we 
give you 10 versions of line 40. In each case, decide if the con· 
dition is true or false, and indicate the next statement to which 

the program will " branch." 

10 LET B=l6 
20 L E1 C=2LI 
30 L E. 1· l)s LIB 

LIO -- - - - -- - --
50 ----------

60 ----------
--------------

rEMENT 40: 
5iA 

CONDITION IS 

40 
IF o ;,-B THEN 60 TRUE 

~-
4
o IF B=D THEN 60 

i=ALSE(48:>15i 

3 4
o IF B/S=D/C THEN 60 

TAU (16 is not 

4
· 40 IF B< ;,-D THEN 60 

~ WHY? equal to 48) _§_Q_ 

5: 40 IF D< =2• C THEN 60 
TRUE WHY? 

-&_ 

~ WHY? 
~ 

? 
~ 

? 

6. 40 IF D/B> = DI C THEN 80 
? 

7. 40 IF 3•D<>2• 8 THEN 80 
~ ?-· - WHY? 

_,__ 

8. 40 IF B•D< = C• D THEN 80 
~ WHY? ? 

9. 40 IF C+B< 40 THEN 80 
~ WHY? 

_,__ 
? 

10. 40 IF B• B> =D• D THEN 80 
~ WHY? 

_,__ 
? 

--· - WHY? 
_,__ 

? _,__ 
? _,__ 

Exercise 3 Pretend you are a computer and simulate running 
the following program. It is a ridiculous program. but it is an 
interesting puzzle. If you do it right, you 'll receive a pleasant 
surprise. (If all else fails, try it on a computer.) 

10 LET F" 10 
20 IF 18<2*F THfN 40 
3(1 PRINT "1,AS" 
35 GOTO 140 
LIO LET G" 20 
50 IF GIF <> 4/2 THFN 70 
60 PRINT "THIS" 
70 G010 90 
BO PRINT "NEVER" 
83 PRINT "A" 
85 GOTO 60 
90 P RINT "PFOGRAM" 
100 LEl F=F-7 
110 IF F/2 <= I• 5 THEN 20 
120 FRINT "E.VER" 
130 IF F/2>1 • 5 THEN 70 
lLIO PRINT " RU'I" 
150 IF G+F< 2 5 THEN 165 
157 PRINT "SPOT" 
158 PR INT "R~" 
160 LFT F=F+l 
165 IF G-F <= F+F THE'l 15 7 

170 PRINT "CORRECTLY • " 
180 EN D 

57 

w 
I" 
,1, 
,e 
·s. 
en 

SC 

,ii. 

·l,e 

he 
ire 
y): 

Jt-
31), 
he 
ch 
; a 
ro­
sly 
h a 

:he 
off 
ice 
3re 
the 

;::,, 

) 

! 
79 



'-

w 
z 
:::i 
z 
0 

Checks to see if 
20 problems have 
been done. 

If A is the correct 
answer, GOTO 110. 

IF A is not correct, 

Jumps over the 
correct-score lines 
(110,120). 

Changes X and Y 
to give us a new 
problem. 

w 
z 
~ 
z 
0 

w 
z 
~ 
z 
0 

w 
z 
:::i 
' z 

0 

58 

Code Name: /MATH 
. . . OU12t 

Here is a program that 1s short, yet it gives a long addi·t· ion q . 
(twenty questions). Draw a flow chart a_nd then RUN it. u1z 
might also try changing 1t to a mult1phcat1on quiz.) (You 

C counts number correct. 
W counts number wrong. 

5 
-10 
20 
30 
·40 
so 
60 

The first QUIZ problem 
is to add 50 and 1. 

LET C,.O 
LET w•O 
LET X•Sol 
LET Y= 1_j 
I F < C+ \I)= 20 TH EN 1 60 ~ PRINTS the pro bl~ 

70 
-80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 

PRINT .. ,.'HAT IS";x;" +";y; ~------'--- m. 

INPUT A • I J 
IF A=X+Y THEN 110 student answer 
PRINT "NO, THE SUM I S"l X+Yl "•" 
LET 'w=\,.'+l ­

G0TO 130 -i Counts wrong answers.] 
PRINT "VERY GOOt" 
LET C= C+ 1 ' I Counts correct answers] 
LET XcX-2 
LET Y=Y+ 3 
GOTO 40 
PRINT "THAT'S THE Elllt•" 
PRINT "YOU HAO"JC;" CORRECT AN[•";w;" wRONG," 
FNO 

RUN 

Back to give another 
problem. 

On the Time Share Corporation system, 
lines 5 and 10 are unnecessary. The 
variables automatically have the value 
Oto start with. 

FLOW CHART 

YES 

Let 's discuss another u~e of the IF . . . lH EN it· 

1 

'i 

. h . h ij cmcnt. upp,,,c 

th

at we w,s lo Pnnt I e squares of all the Whole numhc r

1 

· 
Io. (The square o 2 ts 2 x2, or 4.) We could iay: r 

, r1 ron1 to 

10 PRINT 1*1 
20 PRINT 2• 2 
30 PRINT 3•3 

l ..... There would be 6 additional state­
ments here. 100 PRINT 10•1 0 

110 END 

But that 's rather ridiculous! We can write a much shorter program 
which will do the same thing, as shown in the following flow chart and program. 

"' END 

PROGRAM 

READY 

10 LET 1=1 
15 IF' I> 10 THEN 50 
20 PRINT I•J; 
30 LET I =!+ I 
AO GOTO 15 
50 END 
Rm 

1 4 9 1 6 2 5 36 49 64 8 I I 00 

Notice that the program would be the same length if we de­
cided to print the squares of the whole numbers from 1 to 
100! 

You can see from the flow chart that the program automatically 
repeats itself. This is called luopi11/i. 

On the next page we shall examine this program in detail. 

59 

..... 

,, 
,e 
re 
): 

t­
i), 
1e 
:h 
a 

O· 

;ly 
I a 

he 
:>ff 
ce 
ire 
he 

;:>) 

') 
J 
r 

79 -



Sets the first (initial) value of I. Since 
we want the numbers 1 to 10, we set I 
equal to 1 for a start. 

we first check to see ii I has gone Past 
10. If it has, we want line 50 (END). 11 
not, we wish to PRINT 1• 1, as in tine 20. 

10 LET I" 1 
IF 1>10 THEN 50 
PRINT UU 

After the square of a number is printed 
we then want to increment (increase) i 
by 1 to get the next number. 

LET I a !+ I • j .,, 
GO TO I s , \ Then we branch back to statement 15, Wher 
END we decide whether or not to continue e 

Step 15 uses IF . .. THEN to test if we are finished We 

The END statement 
is reached only 
when I exceeds 10. 

. h f h' I · . Put our test nght at t e start o t 1s program. ( t 1s also possible to . 
other places.) Notice that IF .. . TH EN provides a neat wPut it 
escaping from a loop. In other words. there won' t be an " infia~t; ~ 
loop. 

60 

SUMMARY . Programs can avoid infinite loops by using 
IF ... THEN statements together with statements that incre­
ment the loop variable. 

It's something like a bus driver who travels the " loop" shown 
below, over and over. Each time he passes the starting point, 
he pushes the button to increment his trip counter. He gets out 
of the loop and heads for the garage when his counter shows 
> 10 trips. 

~ Code Name: /SEO/ 

J z Change the preceding program to print out the squares of the 

O numbers from 10 to 30. 

~ 

Code ~arne: //Qu1w 
w,;1, (OFF .LINE) a .outz '"'"· o, '"Y ' "'" " ,.,,,,. h;.,,, 
phys; c,, mat homat "'· '"'"''"'· '"' " '"I that ,,,..,, to 
you . You can use the following program as an example. Your 

ogram should be at least as long, and it should keep score. f' 1
, do ooo,g h dhect;oo, so that aoyo,, cao A UN yo"' '"'""• 

_::~oo yo, aco '"" ;1·s coady, lfy h ON.LINE w;th a 1,;,_, 

:i 

~ 
E QUIZ PR OGRAM (samp e 1 RUN is given on page 62): 

5Af,4PL 

RfpDY 

T 5"0 
5 L,£ NT "HERE IS A LI ST OF SIX NA;,,E5 IN MUSIC, 
10 PR\T "ASKED FOUR QUESTIONS; ANSWER EACH 111TH YOU WILL ep, 
11 :;:NT "CORRES?ONDING TO THE CORRECT NAME," THE Nl..t'I BER" 
12 PRINT "l • BEATLES 2 , EN RICO CARUSO" 
15 RINT "3• BOB DYLAN 4, LUDWIG VA.'\l BEE 
17 :RINT "5• JOHANN S• BACH 6, LOU! 5 ARMSTRON~OV E.'i" 
20 NT 
25 PRIINT "WHO WROTE NINE SYMPHONIES?" 30 PR 
40 INPUT A 

IF A•4 THEN 64 
SO PRINT "NO, EEETHO VEN < 4) IS THE ANSIIER," 60 
63 GOTO 7C 

LET 50:5+ I 64 
PRINT "RIGHT I" ~g PRINT "NAME A FORMFR MAJOR 'ROCK' fROUP," 

80 INPUT B 
90 IF B•I THEN 104 
l00 PRINT ''NO, BEATLES <I> IS THE ANSWER," 
103 GOTO 110 
104 LET S= S+ I 
105 PRINT "CORRECT!" 

110 PRINT "A F'AMOUS ITALIAN OPERA STAR WHO DIED IN 1921 wASI" 
120 INPUT C 
130 If C=2 THEN 144 

140 PRINT "NO, ENRICO CARUSO <2> IS THE ANSoER," 
143 GOTO 150 
144 LET S= S+ I 
145 PRINT "YES 1 I" 
150 PRINT "WHO WAS 'SATCHMO '?" 
160 INPUT D 
170 IF 0=6 THEN 184 

180 PRINT ''NO, LOUIS ARMSTRONG (6) IS THE ANSlrER," 
183 GOTO 190 
184 LET S= S+ I 
185 PRINT "GREAT I" 
19

0 PRINT "OK, YO UR SCORE OUT OF A POSSIBLE 4 I S"J SJ"• " 2
00 I F 5=4 THEN 220 

210 
PR INT "HOPE YOU HAD FUN, MAYBE NEXT TIMF YOU CAN 00 BETTER," 215 STOP 

~
2
0 PRINT "YOU HAD A PERFECT SCORE• CONGRATUI..ATION S I I I" <30 EN D 

61 
79 

e 
I. 

·,e 
1e 
re 
•) : 

,t­
.1 ). 
,e 
:h 
a 

·o­
;ly 
, a 

he 
)ff 
ce 
ire 
he 

;:>) 



~ · 

Here ,s a 
sample RUN 

R~ 

of the QUIZ 
program shown 
on page 61 . 

HEF.E IS A LIST OF SIX NAMES IN MUSIC• 
ASl<ED FOUR CUESTlONSl ANSl>EF. EACH ..,1 TH 
(X)RF.ESPONDlNG TO THE CORRECT NAMl• 

YOU wlLL Br 
THE NU-:BER 

Ill 
z 
~ 
z 
0 

w 
z 
~ 
z 
0 

w 
z 
=? 
z 
0 

I• EEAit.ES 2• ~RICO CARUSO 
3• BOB DYLAN ll• LUDWl G VAN BU THOVU,i 
5• JOHANNS• BACH 6• LOUIS AllMSTRO~G 

l..'HO ',,P.OTE NINE SYMPHONIES? 
75 
NO, PEE1lWVEN (4) IS THE ANSWEF• 
NA!'!£ A FO Fl'IEP. MAJOH 'ROCK' t'F.OUf. • 
7 I 
CORRECT I 
A FAMOUS ITAL IA.~ OPERA STAR wHO DI FD IN 1921 WAS• 
75 ' 

I NO, FNRI co CARL1S0 ( 2> Is THE AN SWFR• 
WHO WAS 'SATCHMO '7 
76 
GREAT! 
OK, YOUR SCORE OUT OF A POSSieLE 4 IS 2• 
HOPE YOU HAt, FUN• MAYBE NEXT TIME YOU CAN 00 BFTlEFi, 

LErS REVIEW SECTION 2-6 

• The IF ... THEN statement is one of the most important 
statements in programming. It allows a computer program to 
dt•cidc• whether the next statement to be executed is the one 
right below. or the one which the THEN part mentions. 
Some examples of correct IF ... THEN statements are shown 
at the right. The parts of the IF ... TH EN statement are: 

23 IF A< 4 THEN 200 
97 IF C> =9• A THEN 320 
126 IF R= S+T THEN 560 
516 IF V<>M+I THEN 680 

Key Words 

Line Number I Condition to be Tested I " YES" Line Number 

! 

120 IF IA > 3 • WI THEN 400 

130.-\ " NO" Line Number I 
• Flow chart rep­

resentation of the 
above IF ... 
THEN state-
ment. 

62 

. /' 

THE N0iaER A THEN Go rol 
<.._ GAEA TEA THAN YES UNE 400 _J 

-........_ THE J~~~BER / 

' ~ a _ 
L....{__GO TO THE NEXT LINE (1 30>) 

Rl.N 

I 
4 
9 
16 
25 
36 
49 
64 
81 
100 

2-7 Statements Using the Key Words 
~off; and : NExf; ~P 

The F o R "od NEXT "'"•'", "" ;,,,,.,, '" ,; •,1,r > <h, 
wri ,;,, of , rog,,m, > ha, d, <h, "me k;"' ,r <h;,, "" "" "" 
again _ in other ~-o~~s program, that _~ontain loor1. Thi, rnc,in, 
that FOi< and N EX I can help You wn1c ,hon progr.,rn, I hat pr

0

• duce lots of output. 

The f F ... TH EN itaternent can also he u,ed to write progr..,rn, 
·th loops hec page 59). but u1ing I-OR and NEXT i, ea,icr ,n 

::.:," """ to wh<h ;, appl ;c,, I."'• '"'""" -.;,, <h, <., •"hod, to print the squares of the first ten natural nurnber1: 

J 10 LET 1•'1 -
20 IF I>lO THEN 60 
30 PRINT ur 
40 LET I,. I+ I 
50 GOTO 20 
60 FND 

-looping with 
®ID and~ 
~ 

10 FOR 12 1 TO 10 
20 PRINT It! 
30 NFXT I 
40 E.',jt 

These two programs do the same thing: 

• They both start I out equal to I . 

e They both PRINT l• l , and then increa,e I by 1. 

e They both continue to run 0 1-er and 0 1•er until finally I reachc, I 0. 

• Then they both stop. 

In other words. both of these progr.ims would RUN a, ,ho"n at the 
left . 

Notice that FOR and NEXT are 
both used in the second program . 
They are always used as a pair. ~ 

~ 

63 

C 

I. 

Ii, 

he 
re 
(): 

JI­
ii) , 
he 
ch 
l a 
ro­
sly 
h a 

the 
off 
ice 
are 
the 

;:::,, 

) 

( 

79 



-.. 

BASIC 

10 
20 
30 
40 

64 

We can see the "loop" in the first program (the one th 
IF .. . THEN) by drawing a flow chart. We can also see tha~t;,c~ 
the number I gets larger than I 0, the IF statement will throw hen 
computer out of the loop. the 

START 

FOR 1=1 TO 10 
PRINT t•l 
NEXT 1 
EN[ 

LET I= 11-------, 

LET l=I+ 1 ENO 

PRINT I• I 

The heavy colored lines show where the looping takes place. 
This looping idea works the same way in a FOR-NEXT loop. 

except that the computer automatically does the 

incrementin[( step (LET l=l+I) 

and the 

1esti11[( step OS 1> 10?). 

Here's a description of the FOR-NEXT version of the same 

program. 

ENGLISH 

Let 1=1 , print I• I, 

go back and get the next 1(=2), print l•I, 

go back and get the next 1(=3), print l•I, 

and so on, 

until we have finally printed l•I for 1=10. 

Are you confused? The above explanation of FOR-NEXT \oops 
is from a computer viewpoint. Let's look at FOR-NEXT IOOP

5 

from a human viewpoint. 

Let'' Write ' " ''"'""'" '° , •• ""' ...... ,, ··,~"' • ·~ ' 
person does something several tunes. For c~ample. i uppo~e that we 
want someone to clap his hand~ five time1. 

A " program" that we might try on him i1 the following: 

1. FOR each number from 1 to 5. you·re going to do 
something. Let's start With 1. 

2. Clap your hands. 

3. Go back and get the NEXT number, but stop 1t the 
next number is greater than 5. 

Someone following our "program" would do the following: 

/

Start With 1. 

Check, is 1 greater than 5? 
NO 

G) CLAP! 

1 2 3 'f S 

,_____L. 

G) !Go on to the NEXT number: 1+1=2. 

Check, is 2> 5? 
NO 
CLAP! 

~ 
G) 

G) 

@ 

/

NEXT number - LET the number equal 
2+ 1=3 

Check, is 3>5? 
NO 
CLAP! 

/

NEXT 1- LET l=I+ 1 =3+ 1 =4 

Check, is 4>5? 
NO 
CLAP! 

/

NEXT 1- LET 1=1+ 1 =4+ 1 =5 

Check is 5>5? 
NO 
CLAP! 

/

NEXT I-LET 1=1+1=5+1=6 

Check, is 6>57 

YES 
STOP1 

If you felt that the above was silly for human being,. we agree. 
That's because human beings are much more in1elligenI than com­
puters. But now you have some idea of how FOR and NEXT work. 

65 

\ 

e 

,C 

11. 

l1e 

he 
re 
1): 

1!-
11), 
he 
ch 
; a 
·o­
;ly 
la 

he 
off 
ice 
Jre 
rhe 

;:,, 



.. 

,,~ 
~ 

There can 
be several 
statements 
here. 

SUMMARY: The FOR and NEXT statements are used to c 
tor the computer while it does something over and over. ount 

RE.ADY 

10 FOF Icl TO 10 
1 

This is 
1120 PRl NT I• 11. I This is like clapping. ] like 

30 ND< T l counting. 
40 EN[l 
RIJ,I 

I 
4 
9 
16 
25 
36 
49 
64 
81 
100 

Here's an example which has 4 statements between the FOR and 
NEXT statements. These 4 statements are called the body of the 

loop. 

READY 
This is the BODY of the loop. 

I LOOP r+ 

,n FOR I• I TO ,._ The BODY is the part of the 

20 PRINT 1,2+1,3+1 program between the FOR state-

► 
30 l F l" 3 THEN 50 - ment and the NEXT statement, 

llO GOTO 60 and ii is executed each time 
50 PRINT "WE'RE HALFWAY THROUGH' the computer goes through the 
60 NEXT l loop. 
70 END 
PUN 

I 2 3 

2 4 6 

3 6 9 

WF • RF HALFWAY THROUGH 

" B 12 

5 10 15 

6 12 18 

--... -
66 

REAI'Y 

A FOR statement doesn't have to Man with I. Look at the following: 

10 FOR M=2 TO 5 
20 PRINT M 
30 NE.XT M 
uO END 

Rlfl'J 

2 
3 
u 
5 

END 
10 FOR M=S TO 6 

RUN 

5 
6 

rnD 

We are changing only line 10; 
the rest of the program remains 
the same. 

10 FOR M•l63 TO 16 
RU'J 

163 
164 
165 

END 

If you were told to count to 10 by 2's, you would say: 

2 4 6 8 10 

How about counting from I to 9 by 2's: 

1 3 5 7 9 

Or count from 2 to 11 by 4 's: 

2 6 10. 

Note that the lower number ( I in from I to 9) is the first value. 
and the number you are counting "by" is then added to it to get the 
next number. You again check to see if the new number is greater 
than the upper limit (9 in from I to 9). 

In counting from 2 to 11 by 4's, (2. 6. 10). the next number would 
have been 14: but 14 is greater than the upper limit. 11. and so. it 
is 1101 included. 

67 

N 

I, 

C 

S , 

n 

,e 
ii. 

l1 e 
'le 
re 
' ): 

11-

11), 
,e 
:h 

a 
·o­
;ly 
1a 

he 
)ff 
ce 
ire 
he 

:;:>) 

j 



68 

We can include a similar idea in the FOR statement by u,· 
additional key word STEP. ing lhc 

FOR Z=1 TO 7 STEP 2 

means counting from I to 7 by 2's. 

RFADY 

10 FOR Z.= I TO 7 STEP 2 
20 PRINT Z 
30 NEXT Z 
40 END 
RU'l 

1 
3 
5 
7 

END 
10 
RUil 

l Steps of 2 

FOR Z•2 TO 11 STEP 4 

! l Steps of 4 
10 J 

END 
10 FOR Z=O TO 50 STEP 10 
RUil 

0 1 10 
20 
30 Steps of 1 o 
40 
50 

END 

NOTE: Unless there is a STEP part in the FOR statement, the 
computer assumes the values are to be increased by 1. 
10 FOR 1= 1 TO 4 means the same as 10 FOR 1=1 TO 4 

STEP 1. 

~A 
I 

a 

Here's an example of "stepping backward"• 

READY 

FOR Z=IO TOO STlP ·t 
PRINT Z 
NEXT Z 

10 
20 
30 
40 
50 
RLN 

PRINT .. ••••••••••••BLAST·OFFt ........... .. END 

10 
9 
8 
7 
6 
5 
4 
3 
2 
I 
0 

••••••••••••BLAST-OFF•••••••••••• 

Notice that when you are "stepping backward," the larger number 
in the FOR statement comes first: 

FOR z =®)TO 0 STEP - 1 

On the other hand, when you are "stepping forward," the larger 
number comes second: 

FOR 1=2 TO {ii) STEP 3 

Really, then, we can say that each FOR statement determines a 
set of values for a particular variable: 

10 FOR F=1 TO 3 

determines the set { 1,2,3} for the variable F. 

10 FOR P=2 TO 8 STEP 2 

determines the set { 2.4.6.8} for the variable P. 

69 

-
" 
I, 
,e 

' · 
:n 

,e 
ii. 

lie 
he 
re 
1): 

Jt-
1I), 
he 
ch 
; a 
·o­
;ly 
, a 

he 
off 
ce 

ire 
.he 

;:>} 

79 



,-

l 70 

Exercise 1 For each FOR statement. write the set of v 1 
will be used: a ues that 

FOR Statement 

FOR L=3 TO 9 STEP 3 
FOR G= 1 TO 9 STEP 2 
FOR Y2= 3 TO 8 STEP 3 
FOR W= 314 TO 817 STEP 200 
FOR 87= 3 TO 16 STEP 5 
FOR R= 1 TO 6 
FOR M8=3 TO 27 STEP 6 

Variable 

L 
G 

_ ?_._ 

_ ?_ 
_ ?_. -

_ ?_. -

_ ?_, -

Set of Value, 

(3,6,9f 
( 1,3,5,7,9} 

~ 
~ ? 
~ ? --=--­? 
~ 

Exercise 2 Now, given a variable and a set of values, write an 
appropriate FOR statement. 

Variable Set of Values FOR Statement 

Q {1,4,7,10} FOR 0=1 TO 10 STEP 3 
P { 18,25,32,39,46} ? 
K3 {200,201,202,203,204} ? 
X {1 ,1.1,1.2,1 .3,1.4,1 .5,1.6,1 .7} ? 
N4 { 10,8,6,4,2} ? 
D6 { 3,8, 13, 18,23,28} ? 

Look at the following programs and then answer the questions after 
each program. 

Exercise 3 

Exercise 4 

10 FOR P=6 TO 30 STEP 6 
20 PRINT "HFLLO" 
30 NEXT P 
-40 PRINT "GOOD-BYE" 
50 END 

How many HELLO's will be printed? 
How many GOOD-BYE's will be printed? 

10 FOR L=3 TO 19 STEP 4 
20 PRINT L-2 
30 PRINT L+~ 
40 NEXT L 
50 END 

How many numbers will be printed in all? 
Now, print the numbers out. 

Rl.N 

13 

•••••••••• •••••••••• 
•••••••••• 
FND 
RLl'I 

?4 

•••••••••• •••••••••• •••••••••• •••••••••• 

Exercise 5 
Find the two errors in the following "program" · 
10FORF=~Tou~EP2 
20 PAINT F 
30 NEXT G 
40 END 

USING VARIABLES IN FOR-NEXT STATEMENTS 

Here's a simple program that will print out 5 rows of 10 aste risk, each: 

RFADY 

10 FOR 1•"1 TO 5 

20 PRINT "••••••••••" 
30 NF.XT I 
40 ENC 
RLN 

•••••••••• 
•••••••••• •••••••••• 
•••••••••• 
•••••••••• 

That's simple enough! Now, let's change the above program as 
follows: 

5 INPUT A 
10 FOR 1=1 TO R 

With this change, we can have different numbers of rows printed 
out. Watch: 

Since R=3, line 10 becomes 

10 FOR 1=1 TO 3 

and 3 rows of asterisks are printed. 

Since R =4, line IO becomes 

10 FOR 1=1 TO 4 

and 4 rows of asterisks are printed . 

" I" 
I, 
,c 
,. 
:n 

,e 
ii. 

11<· 
he 
re 
1): 

11-
11), 
he 
ch 
; a 
·o­
;ly 
la 

he 
off 
,ce 
3re 
:he 

;;>) 

) 

79 

71 --• • 



r" 
Now that we know that we can put a variable in a FOR . . 

let's change the program again : 
st

atement, 

REAl>Y 

5 PRINT "HO\o• MANY BLOCKS o~- ASH.Hl~S IXl YOU wANT"l 

6 INPUT T 
10 FOR H: I TO T 
15 PRINT "HO\i MANY ROwS OF IISTE.RI SKS LO YOU ~,ANT IN eLOCK"lH" 

20 INPUT R ' 
25 FOR I=I TO R 
30 PRINT "••••••••••" 
35 NEXT I 
40 NEXT H 
50 F.N D 

(Leaving out the 
other steps.) 

72 

• I> 

10 

25 
30 
35 
40 

The preceding program illustrates NESTED FOR LOOPS. As 
the name implies. NESTED LOOPS are loops nested, or included. 
within other loops. In the above program. we have the FOR-NEXT 
loop with H. and within that loop. the FOR-NEXT loop with I. 
The two loops work like this : 

. . . . 
FOB H•I TO T . . . . 
FORl=ITOR J 
PRINT "••••••••••" 
NEXT I 

I loop. 
This is the 
inner loop. 

H loop. 
This is the 
outer loo 

NEXT H . . . . . . . . . . . 

When the computer reaches the FOR statemen1 
in line 10. it sets H= I and then continues. as 
usual. executing the body of that loop. But it just 
so happens that the body of the H loop is another 
FOR-NEXT loop - the I loop. So the computer 
now must go through the body of the I loop, over 
and over until I is greater than R (the number ul 
rows of asterisks wanted) . 

When I is greater than R. the computer skips 
to the line right after the NEXT I.just as it would 
in any FOR loop. The line the computer skipped 
to is the NEXT H which returns the computer 
to line 10 (finally!) . Now it sets H =2 and re-
peats the whole process again. 

You might compare this with the way an odometer on an auw· 
mobile works. The tenth-mile dial must go through all the ten digits 

before' the mile dial moves one digit. 

The best way '.o understand what a computer docs with neMed 
FOR loops is to RUN lhe program and study the output. Here is 
a sample RUN : 

Rll'l 

Olw MANY BLOCKS OF ASTERISKS LO YOU wANT7J 
~W MANY ROWS OF ASTEPI SKS IX) YOU WANT IN BLOCK l?ll 

•••••••••• •••••••••• •••••••••• •••••••••• ff()lw MANY ROlolS OF ASTER! SKS 00 YOU WANT IN ELOCK 272 

•••••••••• •••••••••• HOW MANY ROWS OF ASTER! SKS 00 YOU wANT IN ELOCK 376 

•••••••••• •••••••••• •••••••••• •••••••••• •••••••••• •••••••••• 

Do you see that the computer went through the H loop J times? 
And, that each time the H loop was executed, the I loop was run 
first 4, then 2, and finally 6 times? If you keep in mind that the 
BODY of the H loop IS the I loop. this is easier to understand. 

EXERCISES 

Run each program BY HAND. 

1. 

10 PRINT "THIS IS A COMPUTER•" 
20 FOR K= I TO 4 
30 PRINT "NOTHING CAN GO" 
«> FOP. J• I TO 3 
SO PRINT "WRONG" 

1

60 NEXT J 
70 NEXT K 
80 END 

(Now you'll understand Program 1 
in Section 1-10.) 

2. 

10 
20 
30 
40 
50 
60 
7(1 

FOR W=2 TO 6 STEP 2 
PRINT "• • ... 
FOP. Xcl8 TO 20 
PR! NT " • ... 
Nf.XT l< 
NEXT W 
ENC 

73 

" 
1, 
e 
,. 
n 

,C 

ii. 

t,e 
1e 
re 
•): 

1t­
l), 
,e 
:h 
a 

o­
;ly 
1a 

he 
JII 
ce 
ire 
he 

;:::>) 

79 



,,--
REA C:Y 

IO FOR I = I TO 5 
20 PRINT "• " ; 
JO N"-XT I 
40 FN L 
Rltl 

••••• 

l 74 

A SPECIAL TRICK 

You know that using the semicolon ( ;) at the end of a PRIN 
statement (so that the computer does not give a new line le T 
can create interesting effects. We can use this idea in pri nt~i ) 

out rows of asterisks. 
9 

Here the_ semicolon caused the 5 asterisks to be printed on 

the same hne. 

EXERCISES 

Run each program by hand. and show the OUTPUT . 

3. 
10 FO R 1=8 TO 10 
20 FO R J" I 3 TO I 8 
30 PRINT "*"; 
40 NEXT J 
50 PRINT 
60 NEXT I 
110 EN D 

<-will print out _1_ lines. 
<-will put _1_ asterisks on 

each line. 

<-We need this PRINT state­
ment to tell the computer 
NOT to continue to print 
on the same line. In­
stead, we want a new line. 

4. 

w 
z 
:J 
z 
0 

w 
z 
~ 
z 
0 

10 FO R S=I TO 10 

20 FOn T= I TO S 

30 PRINT "*"; 
40 NEXT T 
50 PRINT 
60 N EXT S 

I 70 EN D 

Code Name: /STARS/ 

RUN the program in Exercise 2. 

Code Name: /TRIANGLE/ 

RUN the program in Exercise 4. 
Code Name: / BLOCKS/ 

Write and RUN a program that will print 3 rectangles. each having 

4 rows of 7 asterisks each, using nested loops. 

i:illl! 

OTOM ( •> ( •')' 

l f•~\'1(•>~•) 
'11 n 40(,X!)(i>(t) 
41"- ID\•)'<•'> <•) 
l 1 Te i.o(1 >( ~• . 

c;; 

Ill z 
:;; 
z 
0 

.., 
z 
;; 
z 
0 

Ill 
z 
::i 
z 
0 

w 
z 
::i 
z 
0 

w 
z 
~ 
z 
0 

w 
z 
~ 
z 
0 

Code Name: //GRADE// 

Write a program (OFF-LINE) that plots a bar graph of the grades 
on a quiz. After you have perfected your program, try it ON-LINE 
The output might look like this, where each unit is represented 
by < • >. 

~----------------
R' ·' " U, 

I NPUT GRADES, 
785 
79 0 
7100 
?95 
785 
7 55 
7100 
7 75 
760 
? 75 
?20 
?40 
?65 
770 
? 75 
7101 

GRADES 
0 TO 20 
21 TO 40 
41 TO 60 
61 TO 80 
8 I TO I 00 

TYPE 101 -,HEN FIN I SH E:f,. 

DI STRI E'UTIO"I 
<*> 
<*> 
<*><*> 
<*><*><*><*><*> 
<*><*><*>< ♦><+><$> 

AVERA~E GRA DE ~AS 72•6667 

If you need some ideas, try running this 

IP'<I! 

experimental program. 

REA DY 

1 PRINT "INPUT GRACES• " ; 
2 PRINT " TYPF 101 TO STOP•" 

5 LET T•O 
10 INPUT G 
20 I F G > 1 00 TH EN 1 50 
25 I F G<70 THEN 10 
30 LFT T.,T+ 1 
40 GOTO 10 
150 PRIN T "70 TO 100", 
200 FOR Km I TO T 
300 PRINT "<*>"; 
llOO NEX T K 

Lsoo EN D 
75 

l' 

e 
e 
): 

t­
), 
,e 
h 
a 
)­

ly 
a 

1e 
,ff 
;e 
re 
,e 

;;,) 

, 
J 

! 

79 



~ 

STARTING SPEED 
(miles/hour) 

76 

.5 
1.0 
1.5 
2 .0 
2.5 
3 .0 -
3.5 
4 .0 
4 .5 
5 .0 
5 .5 
6 .0 

w z 
:;; 
z 
0 

w 
z 
::; 
z 
0 

w 
z 
::; 
z 
0 

w 
z 
::; 
z 
0 

w z 
::; 
z 
0 

Write a program (OFF-LINE) 
Then RUN it ON-LINE. 

Code Name: ///SPEED CARI // 

to solve the following problem. 

You are an engineer helping to design a new type of am 
men! park ride. The layout looks like this : use-

'-'' ... 
::= ,· 

The car starts to the left of point A with a certain starting speed. 
Then it continues along the track, passing " booster" stations A. 
B , C , D, then A, B , C , D again, and so on. Every time the car passes 
station A, B, C, or D, its speed is increased 10% by the gear you 
see rotating below the track. If, for instance, the car is travel ing 
at 5 miles per hour coming into station B, when it leaves B, it 
will be traveling at 5+ .1•5=5.5 miles per hour. 

The ride is designed so that the car goes around 10 times be­
fore the power is cut and the car coasts to a halt. The designers 
are unsure as to what speed the car should start. Some say 2 
miles per hour, others say 5 miles per hour. To end their di lemma. 
they turn to you . 

FINAL SPEED 
(after 10th trip around) 

__ ? _ 

w 
z 
::; 
z 
0 

_ _ ?_ 
? 

1 
_ _ ?_ 

1 
__ ? _ 
__ ? _ 

_ ?_. -

_ _ ?_ 

1 
__ ?_ 

Well , now that you ' re stuck with 
the job. what are you going to do? 
Probably the best idea wou ld be to 
make a chart of the various start­
ing speeds of the car, and, for each 
starting speed, show what the final 
speed of the car would be. Thus, 
you want to write a program to 
complete the table shown at the 
left. 

HINTS : You will need NESTED FOR LOOPS. 
The OUTER LOOP will control the increasing starting speed. 

(FOR S= .5 TO 6 STEP .5) 
The INNER LOOP wi ll calculate the speed after 40 " boosts." 

(FOR B= 1 TO 40) 

w 
z 
::; 
z 
0 

w 
z 
::; 
z 
0 

SAMPLE CALCULATION 

Suppose that the starting speed were 10 mph: 

BOOST NO. 
1 

SPEED AFTER BOOST 

Speed= 10+ .h10= 11 
Speed= 11+ .1• 11 = 12.1 
Speed= 12.1 + .1 • 12.1 = 13.31 

2 
3 

40 

and so on, for 40 boosts. The reason that 
we use 40 is that we go around the track 10 
times, passing 4 booster stations each time. 

LErs REVIEW SECTION 2-7 

• FOR-NEXT loops are used for repetitive calculations or 
looping . There are several parts to a FOR-NEXT loop. 
The loop starts with a FOR statement at the beginning. and 
ends with a NEXT statement at the end. 

• A variable i s chosen as a counter (for example. I). and lower 
and upper values are specified for it. A STEP part is some­
times also included to show how much I should be increased 
each time the loop is repeated. For example: 

10 FOR 1=1 0 TO 16 STEP 2 

I First value r, Secon"'d value Ir Step value I 
Thus line IO says that I will be taken from the set of numbers 
{ 10, 12. 14. 16} . 
At the end of the loop, a NEXT statement is always needed. 
The general format for a FOR-NEXT loop is: 

10 FOR l= A TO B 

~g I BODY OF LOOP I 
40 NEXT I 

• Nested loops are loops within loops: 

10 FOR I = A TO B 

20 
30 FOR J-C TOD 
40 ~~\ 

M.1:!IE 
60 NEXT I 
70 END 

Body of the I loop 
(outer loop) 

Body of the J loop 
(inner loop) 



r 

9 

78 

1• ~. 

2-8 Storing Programs on Paper Tape 

NOTE: This section is not ab_out _computer programming. 
It tells you how to use a special piece ot equipment called 
the paper tape punch and reader. You c_an read through this 
section at any time to get the general idea, and then refer 
to it whenever you wish to use paper tape. 

Why paper tape? A s you move along in the computer program­
ming world. your programs are bound to get longer and longer. 
When that happens. having to type in the same program more than 
once (say on different days) becomes discouraging. It would be nice 
if we could " store" our programs for future use, and then later have 
the machine type in our programs for us. That's exactly what paper 
tape can do. Let's see how. 

□ 
. .. 

. . . . . 
t') 

' ) 

.;lall'-''W"-~"" - - -

'-' w .._ -- '-' '-' '-' - - ·-~-- ...... _ ... .._ '-' 
I.al '-' ..., ... 1w 1w \ 

"-

If your terminal is equipped to punch paper 
tapes, it may be of the type shown in the photo­
graph. The combination paper tape punch and 
reader is on the left side of the terminal. The 
punch has a narrow yellow paper tape unrolling 
under a panel of four buttons marked ON. OFF. 
BSP. and REL. The reader is the part in front 
with the small plastic cover. 

This machine stores programs for us by p1111ch­
i11g holes in the paper tape. 

A punched tape looks like this: 

PROGRAM TRAILER 
~----------------------- ,.............. 

;."1'~·~·1·J··~··:;·:r·c;;=-~=;{·{··::;:.:;~.{-:;.:.:;:~.~;;:;: ..... ~ . ~ ,.. . .. .. . . ... . .. 
-- . . .. . .. . '... .. . . . . . • •• •••••• ••••• • •• ••••••••••• •• •••• •••••• • • 

·Code for space 20 30 40 

Sometimes this row 
of holes is omitted . 

These small holes are 
not part of the code. 

0 1 23456789 

I -. • : • : : ! • 

~
·-r.:op················:··:·· . . . . . . . . . ' •·······•·······•············• ········ ....... ····•··· .. 

ABCDEFG . . . . ·1· • • • . . . . ..................... .. .. .. .. .. .. .. ...... : ..... : .. : ..... 
H I 

PORSTUVW 

' •.: ·.: ............•..•..•..•.. . . . . . . . ................ . . . . . . . ........ ..... .. ..... 
X Y Z 

I ••• . . . 
1 

...... . --

Each vertical line is a code for one of the charac­
ters used on a terminal. Y ou don't have to know 
these codes - they are automatically "'decoded'" 
back into letters. numerals. and other symbol~ 
when the tape is " read " by the tape rea der. The 
picture at the left show s you some of the codes. 
(We've put the code for "space" tw ice between 
the o ther codes t o spread things out.) 

There are four w ays in w h ich you c an use 
paper tape. We shall discuss each one in detail. 

OJ SAVING PROGRAMS ON PAPER TAPE 
WHILE ON-LINE 

If you have perfected a program w li i/e 11s i11,: t ire 
co1np11ter on-line, and w ant to save it fo r the 
future. here's what t o do on the Time Share 
C orporation system (other sy stems may v ary): 

1. Type the word PUNCH, press the ON but­
ton on the tape punch (left side of terminal). 
and then press the RETURN key. The 
terminal will chatter away while the punch 
first produces a series of small holes as a 
lead-in (leader) . Then it will punch your pro­
gram into the tape (whi le simultaneously 
typing out a copy for you) , and finish with a 
series of small holes as a trailer. 

2. When the computer has finished , press the 
OFF button on the tape punch, and tear off 
the tape with a quick pull upwards. Notice 
the shapes of the tape ends. They are 
shaped like arrows pointing toward the 
beginning of your tape. 

79 



,. 

80 

~ FEEDING A PROGRAM INTO THE COMPUTER FROM 
PAPER TAPE WHILE ON-LINE 

1. Use your regular procedure to get your computer READY to 
accept BASIC programs. 

2. Hold the tape with the arrows pointing toward you. Place th 
tape underneath the little plastic cover on the tape reader an! 
press the small holes in the leader of the tape over the cogs 
in the wheel that moves the tape forward. Then close the 
cover. 

3. On the Time Share Corporation system, you next type TAPE 
and press the RETURN key. 

4. Push the lever on the tape reader to ON and watch the action 
5. To RUN the program now, simply type RUN. (If you wish t~ 

make changes before RUNning it, type KEY first.) 

Ii 

l 
~ /I 

( 

@J PREPARING A PROGRAM ON PAPER TAPE OFF-LINE 
(WITHOUT THE COMPUTER) 

1. Turn the switch to LOCAL (switch on right side of terminal). 
2. Press the ON button on the tape punch (left side of terminal). 
3. Press the HERE IS key (upper right of terminal keyboard) to 

produce a " leader." 

OR 

Press the RUBOUT and REPT keys together (both are on right 
side of keyboard) until about 2 inches of tape are punched. 
(You should have a longer leader and trailer than those shown 
on page 78.) 

~ 
4. Type 1n the statements of your program as usual eKcepr at 

the end of each line. press in this order ' 

the RETURN KEY 
the LINE FEED KEY 

On some systems. you may also need to press 

the RUBOUT KEY 

5. If you make a typing error, you can correct 1t in one of two 

ways: 
a. Merely type a RETURN. LINE FEED. and RUBOUT, and 

then retype the entire line correctly , 

OR 

b. You can erase a single character by pressing the BSP 
(Back-SPace) button on the tape punch (left side of 
terminal) followed by pressing the RUBOUT key on the 

keyboard . 
To erase two characters. use 2 BSPs fol lowed by 2 RUB-
OUTs. and so on. After you have erased the characters. 
then type the correct characters and continue. 

6. After finishing the program. press the HERE IS button (or 
press simultaneously the RUBOUT and REPT keys) to get 
about two inches of " trailer " tape. 

7. Tear the tape off, pull ing straight up. 
8. Turn off the tape punch by pressing OFF and turn off the 

terminal (or press the CLR button). 

When you're ready to try your program ON-LI NE. folio" the direc­

tions in (I] on page 80. 

Whenever you make a tape copy of your program. be sure to write 
some identification on the beginning of the tape for future reference. 

t'rA.S/ IJN •-., 

81 



,. 

82 

~ OFF-LINE DUPLICATION OF TYPEWRITTEN ~ . 
. .. .. MAT 

T he picture below wa, drawn on a terminal T ERIAL 
to make the computer do this - in fact you · h here i, no . · h · s ould , ea, 
puter a l all ... JUSI I c terminal, t1Jier lots of r ." I Use I Y • •) 
al your desk. The same idea applies to " form" P cluninary he'%. 

If you want to make such a picture, and th letters, and Plann,01 

copies for your friends. you should do it OF/" reproduc '
0 0

n. 
paper tape punch turned O N . T he instruction ·LI~. bu,e:.•••••I 
can be followed. EXCEPT you cw, use onl ,,' '"'2.J<Pages •th n,. 
inR mistakes. y iethod 5h r · 

8
0-.s11 

ti
. -~ 

When you are mshed. you can then make c . ' ' '"· 
(terminal sw itched to L O C AL) by mere! opies, also OFF 
paper tape reader. and pushing the lever~ ~utt,ng the ta ·LIN£ 
START. The same procedure can be u de :;iw the tape Pre •n th, se ,or d . Cad 
of programs already punched on tape. uphcating r er to 

••••• • •••• ••••••••• ••••••••• ••••••••••• ••••••••••• 
•••• ••••• • ••• 

•••• • •••• 
••• BE MY ••• 
••• VALENTINE ••• 
••• • •• 
••• • •• ••• 

••• ••• 
• •• ••• 

••• • ••• •••• 
•••• 

•••• •••• •••• ••••••• ••• 
• 

1Stong1 

NOTE: Larger computer systems also allow you to sa•e pro­
grams on magnetic tapes or on magnetic discs. The methods 
of doing this vary; so you' ll have to get the information from 
your computer reference manual or your teacher. 

:; 
Tech0i(ll'BS 

iuPthe 
Seaso0e-, 
lPWeleP 

FEATURE 

Variables with 
single subscripts 

REM 

Variables with 
double subscripts 

TAB 

READ-DATA 

Library Functions 

Computed GOTO 

GOSUB - RETURN 

~ 

\ 

r../'1 ('o 1· I Y; 

ri& /o 0 v C:>r'."" rv, 
C 

3-1 BASIC Bulldozers 

Q ,,.. 

'NPuf· 

:N1° ~ 
~ 

I 

To ~ eo oo,l'j, 

This marks the mid-po int of our tour, and congratulations ar e in order. 
You can now handle input (IN PUT), output ( PRINT), branching 
(GOTO), conditional branching (I F . . . THE N ), computing and 
storing numbers (LET), and looping (FOR-NEXT). T heoretically, 
just about any programming problem can be handled with this 
fundamental set of key words. 

Of course, it's also "theoretically" true that o ne can move any 
amount of earth with a shovel, given eno ugh ambition . H o wever , in 
practice there ar e t imes when having a bulldozer available can m ake 
life much more pleasant. 

This is the bulldozer part of the book - the place where advanced 
features of BASIC will be explained in order that complicated pro­
gramming problems can be handled without backbreaking labo r . 

We w ill explain eight of these spec ial features as follows: 

SOME APPLICATIONS OF THE FEATURE 

• Especially helpful in handling lists of values (these are called 
arrays) . 

• A key word used to introduce descriptive comments into a 
program. 

• Useful in handling values stored i n tables (these are called 
two-dimensional arrays). 

• Used for printing special output patte rns. 

• Key words used to get lots of input into the computer. 

• Used to do the work of many statements. 

• Used to replace a group of IF ... THEN statements. 

• Key words used to shorten programs that use similar groups 
of statements in several places. 

83 



, 

A 3 

H 

0 

84 

-....... 
3-2 Subscripted Variables; IDIM I and~ 

Up to this point we have bee~ gelling along pre1ty well _ 
kinds of variable names. One IS th~ smgl_e _letter: A, B. C wnh "•o 
The other is a letter followed by a smgle d1g1t : AO, A I , Ai · · · -. z. 
Bl . B2 . ... , and so on._ Let's call these " ordinary" variabl . ·-- 1!11. 
But. as our programming gets more complicated, we'll c narne1

_ 

trouble very soon with just "ordinary" variable names. To shrun 
1
hlo 

let' s use an example: ow lhi
1
. 

TAKE-A-CHANCE-INTERNATIONAL AIRLINES 

Suppose that TAC I-Air has one flight each day of a 31-day 
and that there are three passenger seats available on each "'~nl

h
. 

We want to run a reservation office - a place where a pers: ane. 
request a seat for any day in the month . n can 

Well, we can set up a board like this: 

MARCH 

y = 3 z 3 A1 = 3 81 = 3 

A is the name of the variable where we store the number of 
seats available on March 1: B is for the seats available o n 
March 2, and so on. When we start, we let A= 3. 8 = 3. and 
so on. II a passenger requests a ticket for March 1. we took 
at our board, say OK, and sell him the ticket. And then we 
change the value of A to 2. 

~ 
m 

Let's try automating our ~ystem ~o that any 
ticket office in the country can use a terminal to 
make reservations. A program to do this might 
s tart out as follows: 

10 LET A = 3 
20 LET 8 = 3 
30 LET C=3 
40 LET 0 = 3 

Hold it! Do you see that we'd need 31 LET 
s tatements just to assign the starting values for 
each day? That's one of the problems with 
" ordinary" variable names - we have the job 
of not only choosing the names but also storing 
values in the locations they label one al a time. 
Just think, if we were doing the airline reserva­
tions for the whole year. we'd need 36.5 separate 
LET statements to assign starting values! 

Another trouble with "ordinary" variable names in this example 
is that they' re not very logical ; why should A stand for March I. or 
P for March 16? So we need a way of naming variables where the 
computer could help choose the names and where the names would 
fit our situation a little better. 

Let's look at the situation a little more closely. 
We could invent 
a shorthand 
notation calling 
this M(31). 

As any calendar shows, a month is a collection 
of days - March is a collection of 3 I days. 
We refer 10 a specific day in March by its number, 
for instance, March 12 or March 27. 

M array 

~-;.-;;), ,-- - --, 
r,-- - 1 I 
I I M(2>J r - - - - - i 
1-- I l 
I --1---- I 
I I M(3) I I - - ....J 
l ____ l I 

ii M(4i) r -----J 
t-: -- I I 
1~ -1---- I 
L~ I ---1 

I ,==., I- I I _ _ __ _J 
I 

In a similar way. we can set up a collection of computer variables. 
This collection is called an urra_v; arrJys also have names: the "'M 
a rray" or '"H array." for example. And (just as with months) we 
can talk about a specific member of the array by using an array name 
followed by a number in parentheses. for example. M(8) or H( I :!J. 
These symbols are called :H1bst·ripted ,·ariables (the number is the 
subscript): 

Single le u e, / SU BSCRIPT I 
ARRAY NAME f 

M(B) 

M(8) is pronounced "M sub 8."" 

85 



I l 
r~~ 

• : 429 : 
- - - --' ------ J 

86 

~ 

One of the best things about subscripte_d variables is tha 
help the computer keep t rack of where things are sto d 1 !lr 
because the computer " knows" that M (8) is the 8th m;e be lib, 
array M (just as w e know that M arch 8 is the 8th day ~ f ;

I
o1 ~ 

Also, just as we know that there are 7 day s of M arch befor ,
1 

'rt! 
"k " h h 7 e " illtbi the computer nows t at t ere are members of the M 

before M( 8). We'll soon see how useful this is. But first let'; O::· 

A CRUCIAL DIFFERENCE 

HS, an ordinary variable, is not the same as H(8). a su~ 
scripted variable. The difference is something like !hat 
between the name 

and the name 

HENRY EIGHT -f This is l ike an ordinary 
variable. " Eight' • 
just part of this ma, s 
name. 

HENRY THE EIGHTH 

t 
This is like a subscripted variable. The name tells 
us we have a whole collec t ion of Henrys (who were 
Kings of England), and that this man is the eighth 
one - the eighth King of England named Henry. 

. and sub-
By the way, there is one similarity between ordmarya lab<I f,< 

scripted variables - both sto re values. T hal is. M(B) i'5 
4

, 91. 
a memory location whic h can store a value (for examP e. .. 

1,1 (11 
t,1 (11 

..,"W' 
1,1fSI 

"'~~~) 

M (8) 
M (SIJ 

M (IOJ 
M (ll) 

1,4 (12) 
M ( l l) 

M ( 1• ) 
M {15) 

M ( 16) 
M (17) 

M ( I S) 
M ( l 9) 

M(20) 
M (21) 

M (22) 
M (23) 

M (24) 
M (25) 

M (26) 
M (27) 

M (28 ) 
M (29) 
M (30) 
M (3 1) 

This says that there 
are 3 seats avail­
able on March 8 . 

M ost computers have eno ugh sto rage r oom for ar rays with quite 
a fe w me mbe rs . H o we ver, it is up to us, in o ur progra ms. to indicate 
how many m em ber s o f the array we'll need . For i nst ance. in TAC I ­
Air. w e' ll need 3 1 variables. o ne for each day o f M arch . W e w arn 
the computer t hat we' ll need 3 1 by saying 

10 DIM M(31) 

(Any time yo u have a subscript larger than IO. you must use a 
DIMensio n statement.) A fter w arning the computer, we can u se the 
subscr ipted v ar iables anywhere in the program . 

L et' s illustrate all of this by writing the complet e TAC I -Air p ro­
gr-.. m . First . let' s pic ture a reservatio n board that u ses subscripted 

v ariables: 
MARCH 

M(1) - 3 M(2) - 3 M (3 ) - 3 M (4) - 3 M(5J - 3 M(6) - 3 M ( 7 ) - 3 

M(BJ - 3 M(9) - 3 M(10J - 3 M ( 11) - 3 M ( 12) - 3 M(13J - 3 M ( 14) - 3 

This time we have stored the num be r of seat s for the I st d ay in 
M(I), for the 2d day in M(2) • . .. , for the 16th d ay in M ( l6) . . .. • 
and so on. That ' s logical. i sn't it? 

Here's how we do this in BASIC: 

I The warning to reserve! 10 DIM MC31> The trick is to write 

enough space . 20 FOR D• 1 TO 31 
30 LET M(D)= 3 

30 LET M<D> • 3 

READ'f 

40 NEXT D and ask the computer to ................. make 0=1 , 2 . 3 , .. .• 31 . 

We can now assign our 3 1 starting v alues with only 4 sta tements ' 
Here·s the comple te reserva tio n progra m . 

This line checks to see if ther 
are as many seats left as yo 

DIM """ wish on the day you requested 
FOR n- 1 10 31 (MID] is the number of seats lef 
~~;'~D>•

3 
on day number D .) If there are 

PRINT then the t icke 
PRINT ,. TYP E THE DAY JN MAR CH REQUES TED AN D TH E NllotBER O F --· - - •• 
INP UT D,N 
I F f"I[ DJ > • N Tif EN I 2 0 
P RINT ••SO R RY, ONLY"JMC DJJ 00 SEAT < S> AVA I L ABL E • .. 

PRINT 
O 

FOR MARCH"J DJ""• MAKE ANOTHER R E QUES T• .. 
GO TO 50 

PRINT "RESERVATION OK--I SSUE""J NJ"' Tl CKET< S> FOR MARCH-J DJ ... 00 

LET MC Dl•MC Dl•N 
PRINT .. STJLL"JMC DlJ" !MPTY SEAT( S > ON MARCH""J DJ""• •• 
PRINT °'NEXT REQUEST FLEA SE• " 
GOTO 50 
END 

A R U N i s shown on the next page. 

agent is a utho 
rized to issue a t i c ke 
(line 120), and the num ­
ber of seats availabl 
is reduced by N (lin e 
130). 

87 



88 

~ 
TYPE THE DAY IN MARCH REQUESTED AND 
75,2 Tlt[ NlJitfJER 
RESERVATION OK-- 1 SSUE 2 Tl CKET( S > F or 
STILL I EMPTY SEAT< s> ON MARCH S• OR MARc11 s. 
NEXT REQUEST PLEASE• 

TYPE ffi'E DAY IN MARCH REOUE STF.O ANO 
7 t8, I nt[ Nll"let 
RF.SERVA Tl OH OK-- ISSUE I Tl CKET< S) R or $~ 
STILL 2 DIPTY SEAT< S> ON MARCH 18 • FOR MARCH I ts, 
NEXT REQUEST Pl.EASE• e. 

TYPE THE OAY IN MARCH REQUESTED AND 
1~2 TlitNlfo!er 
SORRY• ONLY I S£AT< S > AVAILAEI..E. R OF S~r 

FOR MARCH S• MAKE ANOTHER REOUEsr. S, 

TYPE THE DAY IN MARCH REQUESTED AND 
76• 2 TH[ ~H11er 
RESERVATION OK--JSSUE 2 TID<ET<s> FO R OF StArs 
STILL 1 EMPTY SEAT< S> ON MARCH 6• R MARCH 6, ' 
NDCT REQUEST PLEASE• 

TYPE TKE DAY IN MARCH R EQUESTED AN[ 
1 ..._ 'tfft t.11.JiletR o, 
END ............._ S£Ats, 

We decide to stop the INPUT 
---------1 Share Corporation installation · 

CTRL and C together, f~ 

. Notice that this program does not keeparecordofrheresorvatio 
t rom one RUN to the next. A more pract,ca/ progr., . . ns 
page 131 . mllgiven on 

There is another interesting feature of sub,cripted variable, that 
you should know about. _ II 1s OK for the subscript 10 be any e,prc,. 
sion, that is, a combmallon of variables and numbe" joined by the 
operators • , / , +, - , and f , 

EXAMPLES: X(K+1), X(K- 1), B(2• J+ 1) 

Exercise 1 In each row, find which variable name or names aie 
the same as the underlined name. For example: 

G(12) ~ G(14) G12 ~ G(12+ 10) 

M9 M(9) M(2• 4.5) M M(4+ 5) M9 M(1 6- 7) 
.E.@.) P(6- 3) P(3) P3 P(1 + 2) P(4-2) P(27/9) 
1!1) M(4) L(16/4) L4 L(1 + 1+1+1 ) L(128/ 32) 
Z(16) Z(16O/1O) Z16 Z 0(16) 2(256/ 16) 

Exercise 2 Simulate running the following program: 

I 10 f)JM n,n~.,. 

20 
30 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 

LET QC24>•130 
PRINT MC I >+MC 3> 
PRINT M< 1+2) 

PRINT MC I >+M<2> 
PRINT QC 4+6> 
PRINT QC4>+QC6> 
PRINT QC 10+ 14> 
PRINT MC28-25> 
PRIN1 MC6-4> 
PRINT 0<24/6) 
PRINT QC24)/QC6> 
PRINT MC 2+ I >+MC 3- I >+QC 8- 4)+Q( 3+ 3> 
END 

Another useful statement is the REMark statement. REMark 
statements are placed in a program to help other people understand 
a lis ting of the program. REMarks are not printed during a RUN -
only during a LIST. For example: 

LIST 

10 REM PROGRAM TO FINt AREA OF CIRCLE 
20 PRINT "TYPE IN THE RAD[ US < IN FEET> r "; 
30 INPUT R 
40 PRINT "AREA IS"; 3• 141 59+R+RJ" SQ• FT•" 
50 REM THE NU'IBER 3• 14159 IS 'Pl•• 
60 EN[', 

EN[, 
RUii 

TYPE IN THE RADIUS <IN FEFT> r? I 0 
AREA IS 314•159 SQ. FT• 

Exercise 3 Simulate RUNning this program: 

REM PROGRAM TO PRINT SQUARES OF ANY 5 NUMBERS 
PRINT "TYPE IN 5 NUMBERS, ONE FOR EACH '? 'r" FOR l=I TO 5 
INPUT N< I> 
NEXT I 

PRINT "YOUR Nll'IBERS", "SQUARES OF YOUR NUMBERS" FOR K• I TO 5 
PRINT N<K>,N<K>+N<K> 
NEXT K 

ENr, 

89 

, 



90 ..____ 

10 
20 
30 
4G 
50 
60 
70 
80 
90 
100 

Exercise 4 Simulate RUNning this program: 

REM PROGRAM TO GENERATE 10 HeONAC.:;; NUMBERS 

LET A<l>•l 
PRINT A< I); 
LET A<2>• 1 
PRINT A<2>; 
FOR J•3 TO 10 
LET A<J>=A<J-l>+A<J-2> 
PRINT A<JH 
NEXT J 
ENC 

w 
z 
::::; 
z 
0 

w 
z 
::::; 
z 
0 

w 
z 
::::; 
z 
0 

w 
z 
::::; 
z 
0 

NOTE: Fibonacci was a mathematician born in Pisa, Italy, in 
1180. The numbers namea after him are sti ll used today in 
higher mathematics. 

Code Name: /TRACK1 / 

Suppose an athlete can run the 100-yard dash in 12 seconds. 
How fast is he going in miles per hour (mph)? 

Well, 100 yards=300 feet=J00/5280=.0568 mile. 
And 12 seconds=12/3600=.00333 hour. 
So his speed is DIT=.0568/ .00333= 17.0455 mph. 

That's a lot of arithmetic, especially if we want to do it for a list 
of athletes. Let's use the computer• 

On the next page is a program which prints the speeds for as 
many runners as you wish , and then gives the average speed. 

Alter studying it and the sample RUN, see ii you can modify the 
program so that it prints the average of only those athletes you 
specify. For example, you might want the average of the three 
highest speeds (that is, athletes 2, 4, and 5) . Can you do this by 
letting the user INPUT the subscripts of the variables he wants 
averaged? 

... 

75 
162 
164 
165 
166 
168 

RforY 

100 
110 
1?0 
1 :lO 
1 • 0 
I 50 
16 0 
170 
i~o 
I9~ 
2 00 
2 10 
220 
2 30 
2•0 
2 50 
260 
?10 
? AO 
290 
300 

"'"' 

HM 1( 201 
~ :.: [ N f?.HO\,, ;,,.A~Y T F. A C',< • tJ M F. S' CO YOU t. l S H TO FNTF P C<20) "; 

~~~~~ ~AF1 ER [ OCH '? • ~"'J TFR A TIME ( IN SECO~I S > FO R 1HE"; 
PFINT ., J {'IO-YAfl t l •P. SH• ~-------+------ -
FOR 1• 1 TO N S is used to find the SUM
;~!~i ;~~LFH , .. , '' of all the " times." The
LET s-s•tl" average time will then be

~!i~/ S I N.
PRINT "'HFFU· ARE THE 11 :-'! fS A-'Jl SPf.E[.S s ' '
pfi J NT "ATHLFTE •••,. " TIME < SECON f:S > ' ' ,.''Srl:.EL <M ILES Pf.J. HUUF >''

FOR 1 "'" 1 TO N
PAl~T 1,TCJ) 1C 3 0 0/5280 >/C l(ll / J600>

NE:<T I
pf,IJNT
PRINT "THE ttiVERA C.: E TIME Ii.AS"; S/N ; " S FCO~ DS• "
PR I NT "lHf AVFRP GE S Fffr \o.AS " J C300 /52 'SO)/CC S,N ll' J t-OO >J" ,...,FH•"

FNL

HOlw MANY Tf.ACK "Tl:-1£5 ' ru YOU \d SH TO nllt.R (<20>75
AFTfR f"CH •7' E~TFR A TIME < I.'11 SECON[S > FOR THE I OO-YAP f LIA.SH•

11,THLETE • 17 1 5 •3
11,lHL ETE • 2 7 1 2• 0
ATHLETE I 3 1 I.Q• I
ATHL ET E I .Q ? 1 1• 3
A1HLETF I 5 7 9 • 8

HERE AAf THE
ATHLfTF I

TIMES A.NC SP~E OS:
TIM£ <S ECONLS> SPEEr <MJLl:.S

I
?
3 .

15• 3 13• 31'-9
1 2 1 7 • 0 "55
I 4• I I 4• 506R
11• :t 18 -1 0 1-4

• 9.~ 2 0•872

tHF AVERl'GE TIME lwAS 12•5 S ECONf S•
11-fE AVERAGE S PFFf ~ AS 1 6•3636 MPH•

Pl:.R HOUR>

Code Name: /AIRLINE1 /

Run the TACI-Airline reservation program for several customers.

Code Name: /AIRLINE2/

Add the following statements to your airline program and see
what happens (type 0 , O as the last INPUT):

IF 0-0 THEN 162
PRINT

PRINT "SEATS LEFT FOR THE MONlH OF MARCH ARE <DAY,SEATS>r"
FOR Da 1 TO 31
PRINT DJM< D>J" ";
NEXT [)

91

w z
:::;
z
0

w z
:::;
z
0

w z
:::;
z
0

w z
::;
z
0

w
z
:::;
z
0

w
z
:::;
:z
0

w
z
:::;
:z
0

w
z
::i :z
0

92

Code Name: //SORT//
Here's a good example of the value of subscripts. This program
sorts a collection of numbers into ascending (increasing) order.
After studying the program and running it, see if you can write a
similar program to put numbers into descending (decreasing)
order.

Al.A CY

PRINT "PkO(ttAl'1 TO SOR1 A LI S T O f NLMEE..hS IN 1 0 ASCUHI NU ORILR"
DIM LC 1001

100
II(\
120
1 3(\
l t:0
i~n
160
1 70
IRO
190
200
?10
2?0
?.30
2 4 0
2~0
260
2 70
280
290
300
310
320
RU<

PRINT
PRl~T "'HO \i. MP~Y Nl.lMPERS ti.P E.. TO eL SOhTH " ;
I NPUT N

P A IN1 .. TYPF 1~ nu L I S 1 OF N ll"IPEF S o:-n . Al A 11 Ml 1"
FOR 1 •1 TON
l~F-U T LC t l
NF><T l
FOR K• 1 TO N- t
FOR J• I TO N-K
lf L[J l <• LCJ+l) THiN 2~0 This is the tricky part.

1--------j It swaps the number in
L(J) with the number in

LJdJ+t) .

LFT T•LC Jl
L E T LC Jl•L(J♦ I l
LFT LCJ+ l l •T
NEXT J
NEXT K
PRl~T
PRINT " THE SORTFt L IST lSt "
fO R l •l TC.I N
PRI N T LCIJ ,,
NEXT I

""D

PROGR~ TO SORT A LI S T Of Nl.t1P£RS uno ASCfNCIN G ORlfP

HQ\,, M P.NY NUMPFF-'S AR£ TO P£ SORT£l'1 S
TYPE 1~ THE L 1 ST OF Nt..MPERS ONE AT A TlME.i

1 3• P5
?ti• 6R
19Ft. 32
?('I. 7 R
11 2• ~

tl-1£ SORT£[L 1 S 1 1 St
• 7{{ 3 . 25 -'I • 6B 12• ~ 98• 32

--

Challenge
Combine the //SORT// program with the program
/TRACKt / to put the athletes' records in the order
of first place, second place, and so on , and then to
give the average ti me for the first three places.

.... ' . .
.,_ poe,;t,,;;---

~

=-->-.:--- •
. ..,. ,,,,. c ... - ~

~~ - :,;.,~ }-SC ii··'- fj-- 1(1.C , -, _: r ... ,;-~-_-, , JAM@f' , ~ , ' ,,, , Bf.., '.,, - ... : ?i

3-3 Two-dimensional Arrays
A new mayor of Ashbank has just been elected. One of his main
campaign promises was to make Ashbank a safe place in which to
live.

His first directive is to the police department - cut down the
number of traffic accidents . So the police commiss ioner's first move
is an order to his computing division - get statis tics on the number of
accidents at each intersection.

Let's look at a map of downtown Ashbank and help ABC (The
Ashbank Bureau of Computing) a nalyze the problem:

CD) CCI) CCD cm (DJ Cill cm a:::J

~::t~□\D
(II) c:::m [DJ

2d Avenue
and

3d Street

2d Avenue CD) = !CD

~ ID !D !C
3d Avenue IIl] a:::J cm

First, we'll need an easy way to refer to a particular intersection.
Seco nd. we' ll have to be able to associate the number of accidents

at the intersection with the name of the intersection.
We could letter the intersections with single letters. or we could

use subscripted variables. Which shall it be? Well. the downtow.,
area is rapidly expanding - so our method should make it easy to
add other intersections in the future. Also. the streets already have
numbe rs - why not use them?

o,

'

1[5;~~ 1
N(2,3) 1 --- _

-- ---l 23 ~
- - - I --- J

94

'---

_ With these facts in mind, we could refer to the_ intersections by firsi
giving the A VENUE name. and then giving the intersectin
STREET name. The intersection in our picture marked With g
heavy dot is " 2d A VE and 3d ST." "

This suggests that it would be nice to have a second type of
subscripted variable. one that has two subscripts. Here' s what these
variables look like in BASIC:

N(2,3) represents the number of accidents at 2d AVE and
3d ST. N(1 ,2) represents the number of accidents at 1st
AVE and 2d ST and so on.

...

Just as with single-subscript variables, the double-subscript
variables store values. So if, in the past year, 23 accidents have taken
place at 2d A VE and 3d ST. we can say:

LET N(2,3)=23

If 2 I occurred at 1st AVE and 2d ST, we can say:

LET N(1.2)=21

We can think of these storage locations as if they were arranged
in a table. The contents are the numbers of accidents at each
intersection .

~ 1st Street 2d Street 3d Street e

1st Avenue 46 accidents 21 accidents 72 accidents

2d Avenue 13 accidents 28 accidents 23 accidents

3d Avenue 16 accidents 18 accidents 34 accidents

The usual practice is to enter these numbers into the computer by
rows. tha t is, in the order:

46, 21 , 72, 13, 28, 23, 16, 18, 34

The best way to compare the safety of the different intersections
is to find each intersection's percentage of the total accidents in
Ashbank. If we found , for instance, that one intersection has 37%.
a nd another has 2 I % , then it would be clear that the former for
some reason is much more dangerous.

So we write the program shown on the next page.

READ'f

10
m
~
~

~

~
w
~
~
100
110
1m
1~
1~
I~
1~
1ro
180
190
200
2 10
2m
RU<

PRINT " TYPE JN THE NUMBER OJ· ACCI DL\JTS AT ElliCH INTE.RSEC TION "'
PRINT .. IN THE OA[FF' 1ST AVl .. ~UF A.~ 0 1ST STREE1, 1ST AVlNUE A.~t••
PRINT "'20 STREET., A:'<,10 SO ON•

00

LET T•O
FOR A• I 10 J
FOH S• I TO 3
INPUT NC A, Sl
LET T•T+NCI&, S l
NEXT S

NEXT A
PFIINT
PAINT 00 AVE ANO
FOR A•l TO 3
FOR S-1 TO 3

STREET"", ••s OF TOTAL••

PRINT AJ "' AVE AND""JSJ" ST ••.,,<NCA,Sll'T >•tOOJ " I.'"
NEXT S
NEXT A
PRINT
PRINT
PFIINT
PRINT
END

--1sT AVE"S PERCENTAGE IS .. J<NC I • 11+N(l.-2]+N(1•31>.IT•too, .. ,
"'2D AVE "S PFPCENTAGE IS .. J<NC2• l1+NC2•2l+NC2•31)1' T•100J"S• 00

"3D AVE• S PERCENTAGE l S'"'J <NC 3• I]+NC 3• 21 •NC 3• 31) I' Y. IOOJ uz. ••

TYPE IN THE NU"lEER OF ACCIDENTS AT EACH INTERSECTION
IN THF ORDER 1ST AVENUE AND 1ST STREET• 1ST AVENUE AHO
2D STREET• AND SO ON•
U6
121
112
113
128
123
116
118
13•

AVE AN[)
I AVE ANt I
I AVE AND 2
I AVE AN[) 3
2 AVE AND 1
2 AVE ANO 2
2 AVE ANO 3
3 AVE AND I
3 AVE AND 2
3 AVE ANO 3

STREET
ST
ST
ST
ST
ST
ST
ST
ST
ST

I Of TOTAL
16•97421
7. 74906:l
26•56831
4• 79 705S
10•3321:l
6•48709S
5•90406:l
6· 642071
12•5461:l

1ST AVE"S PERCENTAGE IS 51•29151•
20 AVE • 5 PERCENTAGE JS 23•61621•
3D AVE"S PERCENTAGf: IS 25•09231•

You can see that I st Avenue clearly has the most accidents - over
50% of all the accidents in Ashbank. There should no longer be any
doubt that I st Avenue needs some traffic lights.

The most complex parts of the program are the nested FOR loops
in lines 50-J00 and 130- 170.

95

'L

w
z
::::;
z
0

w
z
::::;
' z

0

96

1st Avenue

2d Avenue

3d Avenue

4th Avenue

Let's make a table to see how the nested FOR loops work.

FOR A--+ 1

FOR S--+1
--+2
--+3

FOR A--+2
'' N(1 ,1)
N(1 ,2)
N(1,3)

FOR S--+1 N(2,1)
--+2 N(2,2)
--+3 N(2,3)

FOR A--+3

FOR S--1 N(3,1)
--+2 N(3,2)
-.3 N(3,3)

1st AVE and 1st ST
1st AVE and 2d ST
1st AVE and 3d ST

2d AVE and 1st ST
2d AVE and 2d ST
2d AVE and 3d ST

3d AVE and 1st ST
3d AVE and 2d ST
3d AVE and 3d ST

Line 80 finds the total number of accidents in Ashbank.
Line 150 prints the percentage of all accidents happening at each

i111ersectio 11.

And lines 190-210 find the percentages of accidents by 11ve1111es.

Code Name: / ACCIDENT/

Change and RUN the above program for a town that has 16
dangerous intersections (4 streets and 4 avenues).

1st Street 2d Street 3d Street 4th Street

3 accidents 8 accidents 6 accidents 2 accidents

2 accidents 14 accidents 11 accidents 9 accidents

2 accidents 4 accidents 5 accidents 3 accidents

1 accident 3 accidents 2 accidents O accidents

Just as with single-subscript variables, the double·-subscript
variables must have DIMension statements if subscripts
greater than 10 are to be used. Suppose, for example, you
wanted to run /ACCIDENT/ for a town with 15 avenues and
20 streets. Then you would need to add the statement:

1 DIM N(15,20)

-

WARNING: Since this requires 300 memory locations, ii
might not work on some minicomputers.

3-4 Using ITAB I in PRINT Statements

I f you're bored with numbers. PRINT TAB is the answer ' PRINT
T A B allows you to make graphs. draw designs. plot curves. and
generally. to have fun.

Here's how i t works: You have to tell the computer two main
things:

• What to print, and
• Where to print it.

REAt Y

sru ~~iJ TABC8); "*~ What to print

·111 j 1111 ,___,, Wh"• to p,;ot it

01 2 3 456 7!
L_column a

The 8 is the number of a space on the terminal paper . The terminal
paper is thought of as having 72 spaces, or co/1111111s, numbered
from Oto 71.

Statement 10 above tells the computer to go to column 8 and print
an asterisk (•) there. The statement

10 PRINT TAB(14);"• "; TAB(20);"• "

would print two asterisks. one in column 14 and one in column 20.
That's the general idea; now for some specifics :

I] You can print anything at the specified position: N onnumeric
characters must be placed within quotation marks; numbers do
not need quotation marks.

READY

10 PRlNT TABC 15>; "*****"
20 PRlNT TAB(15); "HELLO THERE"
30 PRINT TAB(l 5>;3+4]
40 PRINT TAB<l5>l•3•4
50 EN D
R~

~
•••••
HELLO TH ERE

7
- 7

--

These are numerical
expressions ; they do
not requ ire quotation
marks.

1 This is column 15. 1

N otice that the computer will
space in front of a number for
n n '-' i l ;""" l ...1 \ ~ - - --- ~ '. - - ' ' ...,.

,ys leave a
1gn - either
,es not prim

a + sign. only a - sign. Therefore the 7 is actually
printed in column 16.

97

tJ 98

8) A variable can be used to tell the computer where to print: If X equals 10,

[PRINT TAB(X) ;"• "]

means the same as:

PRINT TAB(10);"•"

If M equals 64,

\ PRINT TAB(M);"•"

means the same as:

I PRINT TAB(64);"•"

You can also specify several columns in which the computer is
to print. (See the next example.)

[I] Once the carriage is in a position, it cannot move backwards
(the terminal has no backspace); only T ABs to further positions
along a line will be carried out. For instance:

READY

10 PRINT TAB<5H"•"JTAB(IOH"+"JTAB<15>J"•"
20 END
Rl.N

• ♦

Column 5 10 15

If you use a decimal number with TAB, only the whole number

part is used:
PRINT TAB(19.788) is taken to mean PRINT TAB(19)

To show you what's going on, let's use an example. One simple
design for the computer to print is a tree. On the next page is a
LISTing of the tree program and a RUN.

The first FOR loop will cause the computer to print IO pairs of
asterisks. The positions of the two asterisks in each row are:

TAB(35-I) TAB(35+I)

READY

10 PRINT TAB< 35>1 "•"
20 FOR tel TO 10

1
2
3
4
5

10

34
33
32
31
30

25

36
37
38
39
40

45

30 PRINT TAB< 35- I); "•"J TAB< 35+ I>;"*"
~ NEXT I
50 PRINT TAB< 35- I> J This is the bas
60 FOR I• I TO 3] of the tree.
70 PRINT TAB<33>J"+"JTABC37>J"+"

so NEXT I ' ~ rints the I
90 PRINT TAB< 33>1 "+++++" ~unk
100 END . .
Rl.N

,..__

• •
•

• •

• •
•

• • • • • • • • • • • • • •••••••••••••••••••••••
♦

♦

♦

♦

♦ ♦

♦♦+♦♦

w
z
=t
z
0

Code Name: /TREE/

Modify the above program to print a tree that is about twice as
tall as the one shown.

99

...
z
::;
z
0

...
z
::;
z
0

...
z
::;
z
0

...
z
::;
z
0

...
z
::;
z
0

...
z
::;
z
0

100

Code Name: //B

Write a program that makes a " graph" of the dist . FIAKE11
car to stop if it is going 10. 15, 20, ... , 80 miles ance ,t takes
the formula : per hour u a

Distance needed to stop (in " car lengths")=.OhS• · se
in MPH) or in BASIC: S (S~speed

LET 0 =.01 • S•S

Here's a sample output:

Rlll

otstANCES NEEDED 10 s'IOP A CAR At VARIOUS SPEEDS

sPEED o tstANCE < EAOi ♦ REPRESENTS ONE CAR LENG'l11)

••••••• •••••••••••• •••••••••••••• ••••••••••••••••• ♦ •••• ♦ ♦ •••••••• ♦

10 ♦
15 ♦

20
25
30
35

"" •5
50
5'

I~
70
75
eo

.. ♦

If you need some help. first try this simple program:

5 LET S = 40
10 LET D=S• S• .01
20 PRINT S :TAB(D + 3);" • "
30 END

3-5 \READ\ and\ OAT A\ Statements; [Resfo"@
We've discussed the INPUT statement (page 37) as one ••) J
getting data (values) into a program. When you u,e the INPLl
statement. the computer types a? and then waits for you to tYP' " '
value. After you type it in and press RETU RN , the compu<~
then uses that number in its calculations. But. if you have ' :,",
data which won't change from RUN to RUN. there "a
method for getting information into the computer. This me

th
od u"'

the READ and DAT A statements.

Rf ADV

10 READ A• B• C, D
20 LET X•A•B•C+ D
30 PRINT "X •"; X "° DATA 2• 3• 4, 10
50 END

I RUii

X = 34

-
,,..,,

-:) "
_--s, (.

. ,(

(
rs r

Look at the program at the left below .
How did that work? The keyword READ tells the computer that

some variables follow which don·t have any values as yet. To find
their values, the computer searches for a DAT A statement where the
values are listed.

So, in our example. at line 10. the computer .. sees .. the keyword
READ. and then the A ; it searches for a DATA statement. finds it .
and then stores the first value in the DAT A sta tement in location A .

1g READ lA

30
40 DATA

Values for Band C and Dare found in the same way.

E::::1t~\
When finished with line 10. the computer has given A the value 2.
B the value 3. C the value 4 , and D the value 10 . At line 20. using
A. B. C and D . the value of Xis calculated (X=2•3•4+10=34).

Look at this program :

REA[:Y

10
20
30
40
RUN

6 6

READ F, G,H,r-:
PRINT F+G+H+M
DATA 23, 32, IO, I
EN D

F equa ls 23
G e quals 32
H equals 10
M equals 1

66

101

... 102

There are several interesting variations possible Wit
DAT A statements: h R.EAD.

1 . We can have more than one READ statement 1
statement . The various READ statements use ~~ one DAlA
the DATA statement one by one. When a value h ~ Values in
it cannot be used again (unless you do somethi~s een used,
explained on page 104). For example: 9 spec,a1 as

READY

10 READ A, B
20 PRINT A+B
30 READ C, t,
llO PRINT C+D
SO DATA 5, 10• 15, 20
60 END
Rll'I

15
35

Here's what happened:

~g READ l A.B\
30 READ C,D

:g DATA , 1 .~ .~

2 . We can also have several DATA statements. It does not matter
to the computer where the DATA statements are located in
the program, or how many DATA statements are used. The
computer combines all of the DATA statements into one big
list of values, which will be used one by one by the READ
statements. So

50 DATA 2,3,4,5

is the same as:

Query Is

50 DATA 2
51 DATA 3,4
52 DATA 5

50 DATA 2
51 DATA 4,3
52 DATA 5

the same as the first two examples?

Answer No, since the numbers are not in the same order as~
the original DATA list.

r;:;-EADY

10
20
30
40
50
60
70
80
90
RlJ',I

15
25

READ A• B
PRINT A+B
READ C, D, E
DATA 5
PRINT A+C+E-D
DATA 10
DATA I 5, 20
DATA 25
END

READY

10 READ A,B
20 PRINT B-A
30 READ C, D, E

Here's another example of several READ and DATA statements
in one program:

:::: ;1,B C,D,E

DATA® i~
DATA 0
DATA 5,
DATA

3 . Two other possibilities can occur:

a. One is that there are fewer variables in the READ state­
ments than values in the DATA statements. In this case.
only the values in the DATA statement needed by the READ
statements are used.

,Q() PRINT C•I)oE+B-A
50 DATA I, ll, 5, 20, IO, 9 7, 33
60 END

:::: llB C,D.E

DATA cb J~~.97,33
Rt.ti

3
1003

READY

10
20
30
,Q()

so
Rt.ti

READ A, B
READ C
PRINT A+B+C
DATA 5, IQ
END

OUT OF DATA
IN LINE 20

The 97 and 33 are never used.

b . On the other hand, there may be fewer values in the DATA
statements than variables in the READ statements. If the
computer finds that it needs more values than are provided,
it halts the RUNning of the p rogram, and types a message
that says: " OUT OF DATA." For example:

=~:g t'\ C

DATA @@ \

The mora l is that the p rogrammer must make sure that
variab les and d ata match, i f that's what he wants.

103

11...J 104

4. It is possible to use the same data over and over .
RESTORE statement. The RESTORE statement isby us_ing the
useful when the same data is to be used at se Part1cu1ar1y
the program. Here's an example: veral Places in

READY

10
20
30
40
50
60
70
RO
90
100
Rl.fv

REAC A, B, c , I \ This uses up all th
PRINT "TOTAL COST I S"I ~-----...:.......=_ ~ ala
PRINT A+B+CI " •"
PRINT "SEPARATE COSTS AREi "l
RESTO RE..---------­
READ X
PRINT XI
GOTO 60
DATA 5, 7, 9

END

TOTAL COST IS 21•
SEPARATE COSTS AREi 5 7 9
OUT OF DATA IN LINE 60

A QUICK SUMMARY:

• For giving many variables values, READ-DATA state­
ments are much more efficient than INPUT or LET state­
ments, especially if the program is to be RUN several times.

• The READ statement names the variables in which the
values are to be stored.

• The DATA statement contains the values which will be
stored in the variables.

• It's the programmer's responsibility to make sure that
the variables in the READ statement match the val ues in the
DAT A statement.

11111

t

,,

EXERCISES

Simulate running each of these programs.

10
20
30
40
50
60

10
20
30
40
50
60

LET A.,12
PRINT A
READ A, B
PRINT A*B
DATA 6, 10
END

FOR I• 1 TO 5
R~AD A, B
PRINT 0MB
NEXT I
DATA P, <1,1J, 6 , 6 , 12 ,R, 1 6, 10,20
END

10 READ A, E, C, D
20 PRINT A•B
30 PRINT D/C
40 PRINT B+C
50 DATA 2, 24,t 2, 36
60 END

10
20
30
40
50
60
70
60
90

10
20
30
40
50
60
70
60
90
10 0
105
110
12 0

READ M, T, F, \I
PRINT M+lo
PRINT W•M
IF Tl'F>IO THEN 60
STOP
PfilNT \;+M
DATA l,15
DATA 3, I
END

DATA 5, 10, 15
READ R, S
PRINT R+S
READ T
RESTORE
REA D U, V, W
I F T= U THEN 100
I F S= V TH L'IJ I 1 0
GOTO 120

PRINT " YOU 'RE 1,'RONG"
GO TO 120
PR I N T "YOU ' RE RI GH T"
EN D

1

105

1111.J.

w
z
:::;
:z
0

~ r
w z
:::;

1874

:z
0

w
z
:::;
:z
0

1875

w
z
:::;
:z
0

w
z
:::;
:z
0

w
z
:i
z
0

106

JAN FEB
1 2

19.0" 18.9°

5.9° 1.3°

MAR APR MAY JUNE

3 4 5 6

23.3° 29.6° 51.3° 58.1°

19.4° 33.3° 48.5° 56.r

Code Name: iWEATHERi t

When the United States Weather
Bureau (no_w the National
weather Service\ was established
in 1870, records of weather Pat­
terns were kept for the first time
Temperature _ patterns were i~
part determined by comparing
average monthly temperatures
from year to year. At the Mar­
quette, Michigan, station, the
average monthly temperatures
for 1874 and 1875 were as given
in the table below.

JULY
7

65.3°

Using READ-DATA statements
write a program which finds th~
difference between temperatures
in 1874 and 1875 for each month.

AUG SEPT OCT NOV DEC
8 9 10 11 12

64.4° 60.0° 45.r 29.9" 21.0'

63.0° 61 .5° 52.8° 39.9° 28.5° 2s r

Hint: Arrange the DATA statements like this:

100 DATA 19.0,18.9,23.3,29.6,51 .3,58.1,65.3,64.4,60.0,45.7,29.9,2\.0
110 DATA 5.9,1.3,19.4,33.3,48.5,56.7 ,63.0,61 .5,52.8,39.9,28.5,25 7

Then READ the DATA for each year (FOR 1=1 TO 12, READ A(I\.
NEXT t -for the months in 1874; FOR 1=1 TO 12, REP..D B(I\,
NEXT I - tor the data from 1875). In a loop, find the difference
between each A(I\ and B(I) and print ii out. A part of a RUN migh\

look like this:

MONTH 1874 1875 DIFFERENCE (DEGREES)

1 19.0 5.9 - 13.1

2 18.9 1.3 - 176

3 23.3 19.4 - 3.9

·· · ··· ·

Code Name: /WEP..THEAl·

Change your program so that it the month in 1875 is warrnertW
its respective month in 1874, the program prints out:

MONTH (number) IS WARMER BY ? DEGREES

~

w z
:::;
:z:
0

UJ z
:::;
:z:
0

UJ
z
:::;
:z:
0

UJ
z
:::;
z
0

UJ
z
:::;
z
0

w
z
:::;
z
0

w
z
:;
z
0

w z
:;
z
0

R._..

If it's colder, print out:

MONTH (number) IS COLDER BY ? DEGREES.

Code Name: ///SURVEY///

Write a program that tabulates opinions taken from a question­
naire of the following type (or invent questions of your own
choice) :

Name: Age:__ Male D Female D

The President should wear a beard :
1 = Agree
2= Disagree
3= No opinion

2 April 15 should be a holiday:
1= Agree
2= Disagree
3=No opinion

3 Schools should remain open all summer:
1 = Agree
2= Disagree
3= No Opinion

Your program should use a separate DATA statement for each
person who fills out a questionnaire. The numbers in each DATA
statement should mean the following (use 1 for male, 0 for
female) :

Opinion on Question
(@ ~ #/ 1 #2 #3

F. a . . -- - ~"--.. ~ Irst uestIonnaire-+ 901 DATA 0 , 18, 2, 1, 2
Second Questionnaire-+902 DATA 1, 16, 2, 3, 1

Third Ouestionnaire-+903

A RUN of your program should look like this .

DATA GATHERED ON QUESTIONNAI R E

2

FEMALE \IOTl:t
MALE VOTEI
tMDER AGE 16 VOTEI
FI'MALE VOTEI
MALE VOTE1
lfi D£R AGE 16 VOT E t
FEMALE VOT£1
MALE \IO TE1
lMDER AGE 1 6 VO T£1

AGREEt
I
4
3
I
I
I
3
3
2

DI SA GREED
4
I
I

•
1
4
I
~

2

NO OPl N I O~
5
5
3
5
2
2
6
2
3

107

w
z
:::.
z
0

w z
:::.
z
0

w
z
:::.
z
0

w
z
:::.
z
0

w
z
:::.
z
0

w
z
:::.
z
0

w
z
:::.
z
0

w
z
:::. z
0

108

Here's part of the program that produced this RUN:

.
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

700
710
720
730
740
750
760
770
780
790
800
810
820
830

READ N
FOR I= I TO 3
FOR J • I TO 3
L ET XC I,JJ•O
LET YC I,JJ • O
LET ZC I,JJ s O
NEXT J
NEXT 1
FOR 1= I TO N
READ S, A
FOR J•l TO 3
READ C
IF S•l THEN 280
LET XCJ,Cl • XCJ,Cl+l
GOTO 290
LET YCJ,Cl • YCJ,Cl+!
IF A >a 16 THEN 310
LET ZCJ,Cl • ZCJ,Cl+!
NEXT J
NEXT I
FOR 1•! TO 3

PRINT lJ TAB< 5> I "FEMALE VO TEt "TAB< 30 > I XC I, 1J;
PRINT TABC40>lXCI,2llTABC53>;XtI,3J

.
DATA 20
DATA O• 15, I• I, I
DATA 0•33•2•3• 3
DATA 1, 2 1, I, 3,2
DATA O, 22, 2, 2, 3
DATA I, 36, 3, 2, I
DATA I, I 4, 3, 2, 3
DATA O, 13, 3, 3, 3
DATA 0, 5 5,3, 3,1
DATA 1,ll9, I, 3, 2
DATA 1•32,3,1,1
DATA 0, 44, 2 , 2, 2
DATA I, 5 6 , 3, 2, 2
DATA O, 32, 2 • 2, 3

.

Extra: Modify your program so that it prints the percenta,e i
people who voted in each category.

r

-

3-6 Some "library" Functions in BASIC:
[saffi, IT@.~. ffi@

Like most things in compu ter programming,
funclions are easier to use than explain. H ow.
ever. i t will help if we take the time to introduce

1 some new terminology - words like fu,,n;,,,, ,
ur1:umenr, and •·alue. T his Will make it possible
to gi ve an accurate descr iption of exactly what
happens when you use functions in a program.

F unctions are actually small p rograms stored
inside the computer. T here are quite a few of
these available in BASI C, and the , ·ollecrion

. C Jf functions that You can call upon is of ten called = I l - , u,,.,, of '""" '•"'· lo <hi, soc<10 0 wo·11
discuss four of the library functions found in every ver sion of BASI C,

@ID Hore • re <wo BAsJc •-• " " "" <ho SQR f>oo, re root) function :

REAoy

O R
RF.Ar,y

10 L E T X=SQR(25>
2 0 PRINT X
30 END
RUii

10 PRINT SQR(25>
20 EN D
RUii

5
s

SQR ;, • fooe,loo which ,;, ,. Yoo <ho "'"'re =• of aooms,,. Y • •
'"P"y , ooms,, whic h ;, call"' <ho ARGUMENT. SQR <hoo
reoo~, <ho VALUE of <ho fooo,loo - Which is Uso soo,re rom of the number. So we have:

FUNCT~ION ARGUMENT VALUE

I ---0 A< 2 s,,,. s (since 5•5 =25J \ i
The argument 1s always enclosed
in Parentheses.

In general. a func tion can be used at any place in a Program
Where a variable is used ; excep t - You can never use a
r o o « ••• oo "• ,.,, side o, , LET " "• moo, "''"• so •
<oo«Joo is 001 a loca<Joo m Which yoo cao Sio,o a •aloe)

109

Ill_

Herc's a program that uses the SQR fu .
in two statements : nctto[\

Problem How long can sections of a f .
rod be to lit into a flat rect •sh,ng
box? angular

Answer From geometry we know lh
" diagonal" of such a box is 9/t

th
e ,en by:

OIAGONAL=SOUARE ROOT OF (LxL+'" n XW)

In BASIC we would say:

LET O=SOR(L• L+W•W)

Here's a program which uses this formula, with the len 1 .
inches: g hs •n

RF.PDY
IC\ P?.INl "TYPE 1..v'IGlH OF POX, • •IDTH OF POX, l>Nt LENGTH OF StCllON"•

20 INPUT L,1",fi '
30 L£1 l)sSQRCL•L+1,1•,,;>

, 40 IF D< R T!il:N 70
50 PRINT "ll\E FISHING ROD 1,ilLL FIT•"

60 STOP 70 PRINT "TliE Fl SH ING ROD ',ION '1 Fl l•"
80 PRINT "TliE DIAGONAi.. OF THE. BOX IS ONLY"J t 90 PRINT Pl" INCHES•"

100 END
I RUN

TYPE LENGT!i OF EOY, \/IDlH OF B()X, AND LENGTH OF SECTIONi

120, t5,2ll
t

THE FISHING ROD ,_-ON'"I HT•
, TliE DIAGONAL OF TliE BOX l S ONI.. Y 2 51 •:N:_:CH:_:.::E:::_S.:•---------

110

Notice in statements 30 and 80 that the
argument of the SOR function is allowed to

be an expression.

. . . ~~
When using functions, you should be aware of the oruer' 1th<

the computer does things. Operations within the argument ; lh­
function are done first. then the function is evaluated, a

nd
.

03

1~~

all other arithmetic operations in the statement are done '°
th

e u

order (see page 23).

I

I

..­
!ifPCY

EXAMPLE:

Function Argument Value Printed

10
90
30
bO
so

t.F-T F~36
PRINT 5QR(~)~---------_JL
PRINT 5QR<4•n - -------- __l_ SQR

F=36
4• F=144
F- 11=25
4• F= 144
12• 3= 36

6
12

5
12

6

6

PRINT 5QR(F- I l > + l O _______ .L_ saR

PR INT 2*5QH<SOR<4•F>*3> - SQR t 1 SQR G)

12
15

60
'/0
FtJII

0 0 SQR f?\

PRINT SQf<(-36> · _______ _JL \!=/
ENL SQR

- 36

12
Error

message

_L
6
12
15
12

A negative argument
is not accepted. We
cannot take the square
root of a negative num­
ber.

SOR OF NEGATIVE. l'Rl'UMF.~T IN LI N E 60

w
z
::i
z
0

w
z
::i
:z
0

w z
::i
z
0

w z
::;
z
0

w z
::;
z
0

READY

10 INPUT D
20 LU R•D/2
30 LET A•3•141S9•R• F.
llO PRINT •1 TiiERE ARE"1 A; "
50 END
RU,

110

Code Name: / PIZZA/

Let's suppose you are a very neat eater, and
only take 1-square-inch bites when consuming
a pizza.

Question

Answer

How many such bites are in a 10"
diameter p izza?
A=rrx rx r=78.5397 sq.- in. b ites as
found in the program below.

Your problem is to improve the given program
so that you can also input the price of the
pizza. The program should then tell you both
the number of square-inch bites and the cost
per b ite . Use your program to find out which
is the best buy: 8" pizza @ $0.75, or 10" pizza
@ $1 .00, or 12" p izza @ $1 .50.

SCUAP f - l~CH rlT'FS l~ AOl>"ir; " - I~CH P IZZ~• "

lllERE An t 1p. .. 5397 SQU~P.E- OlCH PllES l ~ AOD 10 - l"IICH PIZ.!t'~ •

111

w z
':i
:z
0

w z
':i :z
0

RU'

Code Name: //INVERSE PIZZA

Now 1et's 100k at the re11erse problem: How big a pizza .

11

do you need to feed a crowd of P people if each per (diameter\
a gi11en number (call it B) of 1-square-inch bites? son is loge\

Some information you' ll need:
• The radius of a pizza with A square inches of eati .

ng isgiv

LET Fl=SOfl(A/3.14159) enby

• Pizzas are ordered bY their diameter D, and D=
2

•FI.

Write a program that allows you to input the numb
coming to your pizza party , and the number of 1 :r of people
bites each person is to get. square-inch

The output should be like the following :

tt01- MANY PEOPL.E AT YOUR PARTf110
1«>\I MANY SQUARE-tMCH Bl TES EActn 31
t F YOU ORD£R t ptz.z.,:ri< S>, 1ME DI Al"lET£RC S>

SHO\.l..t, BE Al" L.£.ASl

SHOlLD BE Ai \..EAS1'

5HQ\.LD BE AT LEAST

19•8612

lA•0482

Output should
continue until
the diameter

~ \

goes below 8J
inches.

t~CHES• IF YOU ORDER 2 ptz.z.A<S>1 11-1£ ot11METFRtS>

IF you ORt'ER 3 PlZ.Z.A<S>• "t\iE ou1r,n:1ER<S>

1 l . 4103 L --j...-----J
I INCHES•

INCHES• ---
[fill\ Another function in the BASIC _library is one that takes the
integer part of the argument. INT(N) 1s defined on most computm
as the greatest integer less than or equal to N. If N is not an integer.
then JNT(N) is the closest integer to the left of N . pictured on th<
usual horizontal number line. If you look at the picture below. you'll

see that
INT(2.3)=2 0 1 2 ..,. \ l ,
INT(.8)=0 o - cs) ~-(2 3)

If N is an integer, then INT(N)=N .

Question: Whal does JNT(- .5) mean? Here's the way our 1Uk

works:
a. If the argument is positive, then the largest whole number "lo

the left" can be found by chopping off the decimal part (therefore.

INT\2.3)=2).
b . If the argument is negative, then the largest whole number cO!I·

tained in the argument is still the integer " to the \eft" of lh<

argument. Therefore INT (- .5)=-l.

- 1 0 .
,. I u I \ _..

- 1 --(- .5)

II-_ 112

Now let's look at a few uses of the INT function.
To find out if a whole number is even or odd. we can use the INT

function very nicely:

READY

10
20
30
• O
so
60
70
ffu,I

tNPUT N
l F JNT(N/ 2 >•N/2
PRI NT ••ODD"
GOTO 10
PRI NT " EV EN"
GOTO 10
END

? II
ODD
? 56
EVEN
?
EN D

READY

IO LET A= I 0/ 3
20 PRIN T "~"J A
30 E.'I D

, Rl'N

I 3 •33333

THEN 50

Since divid ing an eveJ
number by 2 leaves no
remainder, INT(N/ 2\= N/2
only for even numbers. \

N/ 2= 5.5 , INT(N/2)=5, and
so N/ 2 does not equal
INT(N/2) . Thus. 11 is odd.

The INT function is very commonly used in another way. Let's
say we had $10.00 and wanted to divide it equally among three
people. Let's see how much each person gets . The program at the
left gives the answer.

But money is only expressed with two decimal places - we'd like
$3.33, instead of $3.33333. How do we chop off the extra 3's?

We w ant 2 digits after the decimal point; so we multiply by 100,
take the INT part, a nd then divide by 100.

INT(100•3.33333)/100
= INT\333.333)/100
= 333/ 100

But. 333/ 100=3.33 . which is what we wanted. (This program doesn' t
say who gets the extra penny .)

H ow would we have got one dec imal place? We would have
multiplied by I 0 , taken the integer pa rt. and then divided by I 0:

INT\10• 3 .33333)/ 10
= INT\33.3333)/ 10
= 33/ 10
= 3.3

In general, if you want a number lo ha11e N decimal places
(and it has more \han N places). use the following :

INT((10) N)· o ld number)/(10 t N)

If yo u want lhe value rounded , use

INT((10) N• old nu mber+.5)/(1 0)N)

113

\

....
,,:~

~

w z
::i :z
0

w z
::i
:z
0

w z
::::i :z
0

114

\ ABS] ABS is a BASIC function which returns the ABSOL
VALUE of a number. The function is written ABS (X) . UTE

ABS(10)=10
ABS(O)=O
ABS(- 10)=10
ABS(-427)=427

Notice that ABS(15 - 10)=5 and ABS(\0- 15)=5.

Try this program to see why that's useful :

Code Name: /ELEVATOR/

REJ'I>Y
5 PRINT "THIS PROGRAM ASSU'IES A BUILDING w!TH 15 FEET BETWEEN FLOORS•"

10 PRINT "'WHAT FLOOR IS TME EL.EVATOR ON"•

20 tNPUT A
30 PRINT .. TO WHICH FLOOR IS IT OOING

0

J

40 INPUT B SO PRINT "ll{E NUMBER OF FEET THE ELEVATOR TRAVELS IS">

60 PRINT 15"'ABS<A-B»"•"

70 DID
RI.J,I

ntt S PROGRAM ASSU'IES A BUILDING Wt 1l{ 15 FEET BETWEDI FLOORS•

WHAT FLOOR t S THE ELEVATOR ON18
TO WHICH FLOOR IS tT OOINGll8
THE NU'IBFR OF FEET ll{E ELFVATOR TRAVELS t S 150•

B-ID

\ RND I The last function which we will discuss
is the random number function RND. RND
causes the computer to select a "surprise" num·
ber between O (zero) and 1; in other words a
number like .032145, .285467 , or .76532 1.

0 l ~
1 I I I I . l___._.-
0 • 9 1

It's as though the computer spun a wheel~;
chance, like the one in our picture, to get \e
value for the RN D function ; we' re never qui
sure what number will be selected. . rune·

Sorry to have to say this again, but
th

is d thl
lion varies slightly among computersh, a~ l,0ur . . to c ec•
best way to find out about 1t ts (t,esl of
computer manual , ask your teacher,e~~ions.
all) experiment. Here are some sugg

It ,,,._

I
I

~

--

RI.J,I

• 731631

END
RI.J,I

•619889

ENC

RUN

• 529432

END
RUii

• S29432

END

"-' 1

The general form of the function is RN D(X) . On some computers
the value of X is not important ; on other computers, it makes a dif'.
ference . You' ll see how this works on the next page. But first you
should try an experiment. RUN the following program twice:

READY

10
20
30
40
RUil

FOR K=l TO 5
PRINT RND< 1 >,
NEXT K
END

Here' s the result of the preceding experiment on two different com­
puter systems which we'll call A and B.

Computer A

·893412 • 660973 • 685044 • 655552

• 728673 •222167 9, 70735E-02 •766305

Computer B

• 225555 • 329078 • 306689 .537~45

• 225555 • 329078 • 306689 • 5 3 7845

Computer A produced a completely different set of random numbers
on each RUN . For the applications in this book, this is preferred.
If Your computer acted like computer A, you're all set!

If your computer acted like computer B, there are three things you

115

...

l

~

can tr)' doing to make it act like computer A, producin
prise" on every RUN . g a rea\ "sur.

[D On some systems. you add a statement containin R
the beginning of the program. RUN this program twi!e ND(- 1) at

READY

5 LET X=RND<-1)
10 FOR K= 1 10 5
20 PRINT RND<l>•
30 NEXT K
AO END

' Rll'I

~ On other systems, the way to get different random numbers
every RUN is to change statement 5 to read:

00

5 RANDOMIZE

The rest of the program stays the same.

~ If none of the above work, there is a somewhat clumsy way of
making each RUN be "almost" a surprise. lt takes five extra state-

ments as follows:

REAJ::Y
5 PRINT "TYPE '!IIE SECXlND HANt,'S POSITION ON

6 INPUT S

,Al.L Cl,OCK"I

7 FOR J• I 10 S
8 LET X•RND(ll
9 NEXT J
10 FOR K• I TO 5
20 PRINT RND< 1 l•
30 N[)(T K
40 END
R~

TYPE '!IIE SECXlND HAND'S POSITION ON .Al.L CLOCK?26
,38255 ,598038 ,995577 ,168938

IND
R~

TYPE '!IIE SECXlNt HAN D'S POSITION ON ,Al.L Cl,OCK145
,34335 ,61215 ,745658

• 366534

END

,953 169

, 512073

R[A[·Y

5 LET X•RND<·ll
10 LET H•O
20 FOR 1• 1 TO e

The user typed in 26 after the first RUN to indicate that the second
hand on a clock " happened" to show 26 seconds past the minute.
Lines 7. 8. and 9 then forced the computer to run down its list of
random numbers to the 26th one before printing anything in line 20.
On the second RUN, since the clock happened to show 45 seconds, a
different number in the list was used as the starting point.

One last thing - if your computer acts like A. and you n·ant it to
act like B. try experiment [I]. This technique works in reverse on
some computers!

Now let's look at a program that uses RND. We'll write a com­
puter program that "simulates" the tossing of a coin eight times.
we 'II assume that the random numbers are evenly distributed
between O and I. Since there are two possible results of a coin toss
(HEAD or TAIL), let's decide that if R< .5, it represents a HEAD,
and that if R;a,.5, it represents a TAIL (we could just as well reverse
this choice).

To get different tosses
- - - --- -;-- - -, on different RUNS, your

computer may require
30 LET R•RND< I>
.0 IF R<•S THEN 70
50 PRINT " TAILS "

that you omit this step,
or use

60 GOTO 90
10 LET H•H• l
80 PRINT " HEAt·s "

I 5 RANDOMIZE I
instead.

90 NEX T I
100 PRINT "NlJ'!BER OF HEADS •"JH
110 IN D
Rlll

TAILS
TAILS
TAILS

HEADS
TAILS

HEADS
TAILS

HEADS

~ER OF HEADS • 3 _J

LI.I z
:i z
0

Just as if you tossed a real coin, the order of HEADS and TAILS
is random. If you RUN the program several times, it is highly prob­
able that the average number of HEADS will be approximately equal
to the average number of TAILS.

Code Name: / COIN/

Write a program that s imulates tossing a coin 100 times. Sugges­
tion : Put a semicolon at the end of lines 50 and 80, and add a line
Which prints the number of TAILS. Also experiment with cha nging
R< .5 to R< =.5.

117

--;;,

!;;,~

~

,II
(

llllaJ

•
MAKING RND(1) MORE USEFUL

RN O(I) generntes decimals between O and 1. Fre
we prefer integers between two other number . quent1y, th . . . h s, for . llll••
,imulate rolhng a dte. we mtg I want to generat •nstan •••·

3 4
\ L) e rand cc, ,.

from I to 6 \ I . 2. . • .• or u .
0

rn int ., . '&tri

What can we do? Well:

RNO(I) gives numbers between O and I (not • . •nclud·
6• RNO\ I) gives numbers between O and 6 (b •~g I)
\NT(6• RNDl I)) gives integers from o to 5 ut not tncludin
\NT(6• RNO(l)+ ll gives integers from I ;0 6 . U)
wanted. ' which is Wlti t~t

\n general. \NT((b+ l-a)•RND(l)+a) gives th .
to b inclusive. In the preceding example, a= 1 b: tntcge~ frn.. • - 6, and '""'a

INT((6+1 - 1)• RND(1)+1) Ylthlvt

MINI-EXERCISES

Write programs that each generate IO random intcgc f t
ing kinds: rso lhc fol~

1. Integers from 5 to 20 inclusive
2. Integers from 9 to 15 inclusive
3. Integers from 1 to 3 inclusive
4. Integers from 1 to 100 inclusive
s. Integers from -50 to 50 inclusive

Try the solution to Exercise (1) ON-LINE:

Code Name: IRANO

~
::i
i
0

Ill
t
::i
i
0

Iii
t
::i
i
0

Ill
z
::i
i
0

Ill
z
:i
z
0

w
z
J
z
0

Ill
z
J UJ

z
~
z
0

READY

5 LET X=RND<-1 >
10 FOR 1=1 TO 10
20 PRINT INT<16*RND<1>+5ll

<SH PAGF 11 6,1

t :
.J

UJ
z
~
' z

0

30 NEXT I
40 END

z
0

R~

r

RlJ,J

R.AYER I? 4 7
R.AYER 27 78

Code Name: /DICE/
Write a program that simulates the throwing of two dice. It
should look like this:

RIJIJ

F'IRST DIE SECONt DIE
TOTAL 3 2

5 2 3 s I 3
4 4

I s I s
6 4 2
6 5 2
7 6 3
9 4 4
8 2 3
5

END

Code Name: //GUESS//
Write a program that asks two players to guess which number
between 1 and 100 the computer randomly picked. The program
should give 10 points to the player who was closest. It might look like this:

lliE COMPUTER HAD 8 2•
PLAYER 2 WAS CLOSEST•
SCORE: PLAYER I HAS 0

LET ' S TRY AGAIN.
Pl.AYER I? 3 1
R.AYER 2?9

POI~Ts; PLAYER 2 HAS 10 POI NTS.

119

l

I

a
r .. -

cl 120

~
Remembu, th< follow -------......

3-7 ~ or ~

L t
, imagine that we are writing an American h'. e s k 1 . 1 h . istory

the
computer as s mu up e c 01cc quest· quj,

gram - . . ions < p

l

·n the number of his choice. and then the co • the "" to.
types b I mput ""r

1

t II
him if he is right or wrong. ut a so why . er not · on e s . . 0•1

A sample question 1s: '' Y

Who was the first man to walk
There are four choices· on the mo

1) Alan Shepa~d on?
2) John Glenn
3) Neil Armstrong
4) Buzz Aldrin

Let's call the person's answer X
either a I . 2. 3. or 4 for X . · He Will lyllt

We could then say :

208 IF X= 1 THEN 220l
209 IF X=2 THEN 230
210 IF X= 3 THEN 240
211 IF X= 4 THEN 250

These send the comp
•

1
uteri

spec1a places in th o
gram which tell the e Pro.
why his specific ans:erS(Jn
right or wrong. er was

But in BASIC, we could condense those four lines i ntoOllt r

210 GOTO X OF 220, 230, 240, 250
1

11t:

NOTE: On some computers, this same kind of stateme .
written slightly differently and is known as an ON st."~

11

ment - we'll explain the ON statement on page 121
8

e-

When the computer reaches tine 210, it has a value of X (typed ie

by the person).
Line 210 says: If X= 1. the computer will go to the Jim line oom­
bered, or line 220. If X= 2. the computer will go to the second.~
230. If X=3. it will go to the 1/iird, or 240. If X=4, it will go tolbc

fourl li, or 250.
In other words, the statement can be read like this: GOTO lbc

Xth line number OF these - ,- ,- ·- ·

Notice that for each wrong answer, there was a separate 11111·

sage, explaining why it was wrong.

Now, let's finish our example. and then fill in a few more dcl3it

Ing could b
e part or ii I· argcr Prograrn

~~ply ,, ~HO ~AS THE fl RST MAN 10 1/ALK ON THE ~-
pR INT " ' ALAN SH[PARV" MOON?" th person t eoo pR1t1T .. ;, JOHN GLENN" an a 1 or YPes less

ea• pRftl T .. 3 , NEIL Alf'ISTRONG" 4, the co more than
eoo~ pRltl~ ""' BUZZ AL VRIN" to line 2m1 PLIier Will a
e pRltl 5 h. go
eo•

111
pur x of P.

2 0
,

2
30, 2110, 2so minds the ' w

1

Ch re.
eo

5
c;oTV x .. pt,[ASf. TY PE JN ,, 2, 3, OR "·" ~-------i rules. person Of th

210 pRIN T e
e l 5 GO TO 2?Jo, sHEPARV I/AS llfE FIRST AIIER I CAN TO
gl~ pRttlT ,, s PACEI Alf'ISTRONG I S THE AN S WER•" GO IN10"

ee pR1t1T
g2~ c;orO 2,~~ROtlGI a,ENN WAS llf E FIRST Al'IERICIW TO
e2

0
pRftlT ,, [AR11fl Aff!STRONG IS THE AN SWER•., ORBIT TH E"

2;1 pR1t1 \70 e
35

GOTO "RJ GHT II ON JI.LY 20, 19 69, Aff'ISTRONG BE

2
AO pRftlT ,, tJRST MAN TO IIALK ON THE MOON , " CAME THE"

:Al pR ftl T 270
845

c;Or0 · •'NOi AL DRIN I/AS THE SECONV MAN•·AllOUT HAL
e50 pR l ~T ., AfTER ARl'ISTRONG•" r AN HOUR"

251 pRINT
g70 glD

fllD
RtJI
l,tiO ~AS THE Fl RST MAN TO IIALK ON THE
J) pJ,1111 5HEPARV MOON?

In a longer program, this
would be the next question.

gl .,oHN GL [NN

31
NEIL ARMSTRONG

4
, Bl)Z:t ALDRIN

~~G)ITI I ON Ji,,l.Y 20• 1969• ARMSTRO ,iRST MAH TO wALK ON THE MOON• NG BECAME THE

THE ON ... GOTO ... STATEMENT: Many computers use
the key words

I ON ' ' ' GOTO ' ' . , instead of [GOTO . -~ -

The ON ... GOTO . .. statement looks like this:

210 ON X GOTO 220, 230, 240, 250

Again, if X is 1, the computer will go to the 1st line number
or 220, if X is 2 to line 230, and so on.

So, the two possible forms are:

210 GOTO X OF 220, 230, 240, 250
or
· 210 ON X GOTO 220, 230, 240, 250

Check, perhaps by trying them on your computer, or by
reading your computer manual, which form your computer
uses. They do exactly the same thing.

121

j

l
-J_

w z
::l
z
0

w
z
:;;
z
0

w
z
::l z
0

w
z
::l
z
0

w
z
::l
z
0

122

..
In either case. if X is not a whole number th · f X · • c valu

t runcated (the decimal part o 1s chopped off) e or X
1 F X : 3.65 . a G OTO-X -O F statement _will use 3 as· :

0

; cxamp~
than I O R greater than the number of hoes listed th f X 11 ~

11

. X O F d . . e comp
skip the G OTO· - statement an contmue on the Utc, -1

Finally, expressions can be used instead of X _ t1ex, state~
the expression takes on the correct integer values :USl make llln
of line numbers following it. C heck these examples: or

th
c numbci

20 GOTO M OF 20.30,40,50.60
80 GOTO F+ Z OF 100.120,153

114 GOTO P- 0 OF 600.200.1800.2200

20 ON M GOTO 20,30,40,50,eo
80 ON F+Z GOTO 100,120,153

114 ON P- 0 GOTO 600,200,1800,2200

RlN

ro RE ~ 1
RE FA Ml
!;OL f P. MI
Ill FA MI
SOL FP. MI
Ml SOL FA
SOL FP. Ml
Ml RF CO

These are all correct uses of G OTO . . . OF ... or of ON

G ITTO ... ' ·

Code Name: /MELODY

use AND and GOTO K OF to write a program which genetai!S
8 bars (measures) of melody as follows : Begin with "00 REIi;
end with " Ml RE DO," and generate randomly 6 bars in betwM

l@~ $)' ;·1 ~) ~/~~:;,,
~

HINT: Try this short program to get some ideas:

5 LET X=RNC<-1> < S F F PAGE 11
6
•>

10 LET K:INT< 3• P.N[<l>+I>

REAIV

?0 GOTO K OF 30• SO• 70
30 P RINT"RFFA MI"
.uO COTO 10
SO FRINT "Ml SOL fP."
60 GOTO 10
'/0 PP.INT " SOL FA Ml"
80 COTO 1 (\
90 ENL

RnU'l•~------------ --~, - ni-it elodY out 1
, P

After you have RUN the program . write
th8

nin 35 shO..,n
1
·

quarter time, using regular musical notatio

diagram above.

·········· uar11 Program

$ubfWltnl

RETURN

w
z
::;
z
0

Code Name: //SONG//
Write a program that randomly generates 4 lines of melody, with
four bars in each line. Allow all 7 notes (DO, RE, Ml, FA, SOL, LA,
Tl) to be used. Hint: Use nested FOR loops (see page 72).

3-8 I GOSUB I and I RETURN J

There are limes when the same type of calculation may be needed
at various points in a program. Instead of retyping the statements
needed for this calculation each time, we can write a subruutine (a
part of a major program) which performs the needed calculations.
The G OSU B statement is then used to branch to this subroutine
from any point in the program. The RETURN statement is used
to tell the computer that the subroutine is finished, and the program
should now resume execution where it left the main pruw am. It
works as shown at the left.

Another use of subroutines is to enable several persons to work
on the same large program simultaneously. Each person writes a
subroutine to do part of the program; then, a main program links all
of these subroutines together.

Subrovt1ne • 1
GO SUB 1000 -.!-----------j- 1000 • • • • • •

... I ~ RETURN

Subroutine • 2

GO sue 2000 TI 2000 .. • .. ,
• • • • ••• •• • RETURN

Subroutine : 3

.......... I
GO SUB 3000 -+--.'.::======-./f" 3000•• •• •• - r---------..J.. RETURN

123

..._

..
In either case. if X is not a whole number th

1
runcated (the decimal part of X is chopped '0 tf: value or X

IF X =3.65, a GOTO·X-OF statement _will use 3 as· ;or examp~'.
than I OR greater than the number of Imes listed th · If X ilk , e CO Ii

skip the GOTO·X·OF statement and continue on th mputcr~i
Finally, expressions can be used instead of X ~ nextsta1cllilll

the expression takes on the correct integer value :U
st

make Iii!
of line numbers following it. Check these example:: or

th
e num~

20 GOTO M OF 20,30.40,50.60 20 ON M GOTO 20,30,40,SO,SO
80 GOTO F+Z OF 100,120,153 80 ON F+Z GOTO 100,120,1S

3

114 GOTO p-Q OF 500,200,1aoo.2200 114 ON p- Q GOTO 600,200,1800,2200

w
z
::::;
z
0

w
z
::::;
z
0

w z
~
z
0

w
z
~
z
0

w
z
::::;
z
0

122

RL.~

ro fiE' ~ r
Rf FA Ml
SOL f I) MI
Ill FA Ml
SOL FP MI
Ml SOL FA
SOL FP Ml
Ml RE CO

These are all correct uses of GOTO . . . OF O f
GOTO · · r o ON ..

Code Name: /MEUlOT

use AND and GOTO K OF to write a program which genera:e
a bars (measures) of melody as follows: Begin with "DO RE~·
end with " Ml RE DO," and generate randomly 6 bars in belM m~; i' ;,n,

i i 1 I
l~ i ~ I / 1~ 1

HINT: Try this short program to get some ideas:

RfA[Y
5 LET X=RND(-1) csFF pAGE 116• >

10 LET K=INTC3♦HN[<!>•!>
PO GOTO K OF 30, 50• 70
30 PRINT " RF FA MI"
uO fOTO 10
50 FRINT "Ml SOL fP"
60 GOTO 10
70 PRINT "SOL FA ('1,1"
130 COTO 10

90 £.NL
RL"1 ~

d out ,n~

After you have RUN the program, write the_lT1
810

Y5h0wn iO

quarter time, using regular musical notation
85

diagram above.

,-i,.n program

Subtoutint

·········· ··········

RETURN

w
z
::::;
z
0

Code Name: //SONG//
Write a program that randomly generates 4 lines of melody, with
four bars in each line. Allow all 7 notes (DO, RE, Ml, FA, SOL, LA,
Tl) to be used. Hint: Use nested FOR loops (see page 72).

3-8 /GOSUB /and /RETURN /
There are times when the same type of calculation may be needed
at various points in a program. Instead of retyping the statements
needed for this calculation each time. we can write a s11bro111ine (a
part of a major program) which performs the needed calculations.
The GOS U B statement is then used to branch to this subroutine
from any point in the program. The RETURN statement is used
to tell the computer that the subroutine is finished, and the program
should now resume execution where it left the muin pro11r11m. I!
works as shown at the left.

Another use of subroutines is to enable several persons to work
on the same large program simultaneously. Each person writes a
subroutine to do part of the program; then, a main program links all
of these subroutines together.

Subroutine = 1
GO SUB 1000 _.J....----------t• 1000••••••
.......... - --r----------,

Subrouune :: 2

..........

RETURN

Sub<outme ::: 3
oo,oo™E ™·--··· I
:::::::::: - ~ 3000•• .. ••

GO SUB 3000 -..--------- , •• ••

RETURN

-r---------+ RETURN

123

~

LJ

ti I

124 ..._,__

Let's look at an example of a quiz program that u
ses GOSIJB: ---------------

READY

120
130
140
ISO
160
1 70
IPO
190
2nn
? 10
? 2 0
2 30
240
250
?60
? 70
eso
290
300
3 10
320
330
340
JSO
360
420
430
440
450
9000
9010
9020
9030
9040
90~0
9060
Q070
901'0
9090
9900

PFilNl
PR I N1
Pfi l \Jl
PFi l N1
P~ I N1
PF. I N1
PRIS1
PP I Nl
Lfl l\• 1.1

"JN THI S PROGRAM" YO U I. ILL PE ASKf[FOUH Ql 1E.ST10NS, "

:~~~f=~~~~r o~~s!!o~~R:J~~. ~H[N~Blfi O 1- THE A.~S"1 R"

;·!~, ~~!J ?.~ > l~f r~~~~~~!e~:i:: .. ~~ ;• ~~~~~ I N(, L6!J1F1 I"

1AP< I ClH"'? >? l.ffl< S '' I TJliPCllQ) J " b) f< YEP.f. S"'

r.OSUF 90(10
PPINT up . THf LPPf.t S T rt SH F"Vf'Fi PFEPARfl ._ASI"
i--fl l NT TPP<1Q) ; " I > FRIE [fl..fPHA:-VT"JTAP<'-10 >1"3) P<l lL FI HIPPO "
PPINT TA P(I OH ··~ , ROAS1 CAMF'L"J TAr< I.IO) J ··~ , n ~Kf[RHl:'11O "
LET A•?
GOSUP 9000
PRINT "'3• ROPFR10
PAl~T TAP<IOH., l l
PRINT TAB< I O>; "2>
LFT A• 2

O..f:0:E~T[LAST PLAYfL fOF-i: \."CAT TEA.\!?"
CHI CAGO''J T~e< .tiO >J "'3> S T• LOUIS'"
Pl 11 seunGH"J TAP< ~0) ' " 4) POSTON "

GOSUP 9000
PRINT ''4 • 0 LO\lf 0 I S A TEW. I ~ \r.1iJ:liT SPO RT? "
PRINT lAe<tO>J" I) C-0Lf .. l TPPCI.IQ) J "'3) e tLLIAfi LS"'
PHINT TAfC 10lJ "'2> SOCCFR ' 'JTAPC'40)J "lo > 1 L"N IS"
L£T A•4
f,OSUB 9000
PRINT "THAT 1 S ALL TH'f OUFSTIONS FOR NQ~. ••
P R INT "O UT Ot fOUR QUESTI0:'11 S YOU A." S \.E RF"l 00ICJ" CORRECTt.Y"
PRI:r,JT .. A~t'"J 11.'J" INOORREC11..Y•"
STOP

PJHNT "'TYPE THE NL"1P£R Of YOUR JliSS\ERt ••1
!~PUT P.
If A• R THEN 9 060
PRl~T "NO" THE A. ... S \fR I S ~UWIPER .. J AJ " • ••
LFT v-,1.+ 1
GO TO 9080
PRINT "'1.'0W•-THAT'S J;IQiT• ..
LET C•C+I
PRINT
RETUf<N
EN[

Here's a sketch of how the quiz program works:

170 Ouest,on 1 (h lccoughing)

210 GOSUB 9000

220 Ountion 2 (largest dish)

260 GOSUB 9000

270 Question 3 (Roberto Clemente)

310 GO SUB 9000

320 Question • (' IOve')

360 GOSUB 9000

420 Summary of scores

9000 Subroutine
Input the answer and check ,t
If wrong, pnnl the co,recl answer

and add 1 10 the " wrong" counte, (W)
If right. prm t " WOW - THAT'S RIGHT"

and add 1 to the .. corre<:I" counter (C)
9080 RETURN

"

w z
::;
z
0

.__

1 n thi~ example. lines 170 to 410 present four difl"t-,,,
111

qui
7

que, ­
tions. The subroutine always does the same thing: it allow, the
student to input an answer, 11 checks the answer, and it keeps \Core.
Notice that the correct answer ts always found in the VMiable A .

Summary: At a GOSUB statement. the computer:
• goes to the subroutine.

• works through the subroutine until i t finds a RETURN
statement,

• then it branches back lo the_ sta_tement ri11h1 af1,,, the GOSU 8
that sent ii to the subroutine tn the first place.

H ere's a R UN of our program:

R lf,I

JN THJ S F-P.OC·RAM,. YOL• ULL Pf ASKU· FO l:R 0Ul S TJ 0 ~ 5 .

AF TER FACH CUFSTIO~, TYPF lHF -~U'1DU• 0 ► l H.E. A.-..S \rE. lf
YOU PFl. 1 £VF 10 f •E CORflFCT •

I • ONE OF THf LO'JCFST CA$f5 OF HI CCOUEH!N o LA STfl r
I> .:l LAYS J) 8 ~ f EJ< S

? > 2 \r.ED<S -4) ~ Y£Af,, S
JYPF TH£ ~liMPlR OF' YO UR ANS1r.f'Rt 7 J
NO, THF ANSi..ER IS NLl"lPfR I.I•

? , THF L A~ GEST t (SH ~VFP. FRFPAREr lr.AS r

I > f,f,J£r fLEPHANT 3) Kl l Lf r HIPPO
2> ROAST CAME.L 4) EAKE.[, F.HJ.'~O

TY PE THF NL.~PER OF YOlJR ANS 1,.1£Ft? I
NO, THf ANS lr.eR I S NU'1BfR 2•

J• ROeFRTO CLlME.NTE LAST PLAYE[,-OR
I> CHIC~C,O
? l Pl TTS .. URl,H

TYPE Tl-lE "U-tPER OF YOL'R P.='I S "-ERt?2
'-<)1,,- - THAT 0 $ R f ffiT•

ll , "LOVE
O

IS A TE~ I~ \HAT SFOAn
I > GOL F
2) ~ CCFR

TYPF THE NIJ."!PER OF YOUR .ANS\i.f'Ja? ~
W\i.•-TH.AT"S Rl CHT•

\iH.AT Tl.AM?

3> S l• LO UJ S
-4) EOSTON

3> PlLL!JliRtS
ID TENV! S

n,,,o T 'S .ALL TH£" OUES T J ON S FOR NO"-•
OUT OF FOl'P OUFS TION S YOU P.NSi.£R£[: 2 COI-IP.EC TI.Y
IWC ? l~CORRFCTLY •

Code Name: / FACT QUIZ/
Wri te a quiz program using your own questions (and answers) .

Code Name: / / SUPER QUIZ//
Get 8 students to work on a longer qu iz w ith each person c on ­
tributing 3 questions. Student #1 should use l ine numbers in the
1000's and student #2 in t he 2000's. and so on.

125

,.

126

4
faPAW8Y

~laces

~

T wenty key words. seven commands. and four functions - thai'i
the total count for the BASIC vocabulary studied in the first Ihm

parts of this book. Here they are:

KEY WORDS
COMMANDS FUNCTIONS -

PRINT STOP READ
RUN SOR

END FOR DATA
LIST INT

LET NEXT RESTORE
SCA ABS

INPUT STEP GOTO K OF
BYE AND

GOTO DIM (or ON K GOTO)
PUNCH

IF REM GOSUB
TAPE

RETURN
KEY

THEN TAB
As we are about to see, that's more than enough vocabulary to

write programs that solve professional-level problems - to do whal
is called applications programming. Some of these applications 11111
seem far away from the life of a student, but they will I,eCoffl(

familiar in short order.

NOTE: Since all the required features of BASIC have been
e xplained in the first three parts of this book, we will not
explain the programs in th is part in complete detail. Th

15

means that it may take several days of study and ON-LINE
experimentation to completely master a given programrn

1
f'll

idea. The "suggested explorations" given fo llowing
th8

programs could take even longer. Don't be discouraged bY
this; that 's what be ing a profess ional is all about.

. . a: t scctioOI
A teacher and class may decide to attack the dmeren . thl

of Part 4 as individualized (or team) projects. If this 1s the ca,e-
list on the next page will help in selecting projects.

"

IQ-
.--•

Here are the program, you'll _li_nd in Pan 4. The sec1ions shown
here can be tak_en in any orde~; Jt s _also O~_.10 sk_ip ov_er ,eciion, in
case you are in a class that s using an ind1v1duahzed project ..
approach.

t

4-1 Data Analysis

/HOTEL/ and /AIRLINE/ illustrnte computer
reservation systems. one of the fastest growing
applications of computers today.

4-2 Nonnumeric Applications

Computers can be used to manipulate words
as well as numbers. The programs /SOAP/ and
/MENU/ show you how.

4-3 Games and Simulations

The program /SLOT MACHINE/ makes the
computer simulate a gambling device; you·11
see why it's impossible to "beat the house."
The program /BURIED TREASURE/ is a
two-dimensional game that shows what a power­
ful tool coordinate geometry can be.

4-4 Business Applications

/ADD-ON INT/ and /UNPAID-BAL INTI
show you how to calculate the interest charged
by credit companies and banks when they loan
you money ; /PAYROLL/ is a program that cal­
culates the "take-home" pay for each employee
in a company.

4-5 Batch-Mode Computing

This section is for people who use card input
instead of a terminal.

4-1 Data Analysis
There are many hotels that use computers to find out if a room is
available on the dates requested by a customer. Airlines use similar
systems to find out if there is room on a specified flight on a specified
date. There are even computer reservation systems for checking
theater and sporting event ticket requests. All these systems use
the same general programming idea - they compare the customer·s
request with data about the rooms (or seats) already reserved.

127 JJ

128

"' "l .;,1j - '' ' r ,,- vj~ ~
. I •· , ~•V \ . • • . • ~ Q:, '.

. "

... rn ,..I
Program 1 : /HOTEL RESERV/

Here are two sample RUNS of the program.

RU'I

11iE PIXIE HOTll. AUTOMATED RESERVATION SYSTEM

·········•·••··•·••·•·····••···••••·••······
HOW MANY DAYS 00 you WI SH TO STAY? 3
TYPE IN EACH OATE DESlREC AFTER EACH '? ', TYPING

MARCH t AS 3•01• DECEMBER 14 AS 12 • 14• MD SO 011,

?li-04
111• 05
14•06
ROOM 901 IS AVAILA"-E ON DATES RFQUF.STED•

RATE IS l 18 PER DAY•

rooM 902 IS AVAILABLE ON DATES REQUESTED•
RAT£ I S S 16 PER DAY•

ROOM 905 IS AVAILABLE ON DATES REQUESTED•
RATE IS l 20 PER DAY•

WHICH ROOM 00 you WI sH?90I
YOUR HSERVATION IS co,inRl'IED•

----· •- • • •• -•--•••••TEAR HERE••••-••••- --- • •-••••

MEMO TO RESERVATIONSI ENTER NEW DATA r0R ROOM 901•
ADD 4•0lb 4•051 4•06 TO PRESENT CATA•

--------------------TEAR HERE - ------•--•--•--•••

RU'I

11iE PIXIE HOTll. AUTOMATl!:D RESERVATIO!I SYSTEM

·•·•···•·······•••••••··•···················
HOW MANY DAYS IX> you WI SH TO STAY? 2
TYPE IN EACH DATE DESIRED AFTER EACH

ti:ARCH I AS 3 .01, DECEMBER IA AS

' l '• tyPt~ G
12• tA• #ID SO GM•

14•08
?4•09
SORRY• NO ROOMS ARE AVAILABLE fOR ALL l)AYS R£QUESTE°'

----• -··--- -------• - TEAR HERE•---- - --- •

10
20
30
40
50
60
70
80
90
100
110
120
130
140
,so
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
41 0
420
430
440
•so
• 60
"70
.. 0
490
soo
SI O
s20
S30
540
sso

The data on hotel rooms are given in DAT A statement, that use
the following code. or s 1r11c1uri• :

~813 oATA ~ 813~ 15, ~ 4.03, ~404, 5.10, ~
HOTEL \

ROOM NO. RATE APRIL 3 APRIL 4 MAY 10 I END OF DATA

This statement says that Room 8 13 r~nts for $15 per day, and that
it is already re.H•n-ed for April 3, April 4, and May 10. The zero . 1
the end is a " flag" to the computer that .lets it know there is no mo;c
information on file for Room 8 13.

A LIST ing of the program is given below.

pRIST "THE PI XIE HOTll. AUTOMATED RESERVATION SYSTEM"
pf1JNT .. ••"

PRINT "HO• MANY DAYS 00 YOU WI SH TO STAY"I PRINT

t NPUT N p RJ:iJ T " TYPE IN UCH DATE DESI RE D AFTER EACH '1 '# TYPING"
PR INT " MARCH 1 AS 3 • 0 1.t t,ECfl'tBER 14 AS 12 • 14• ANO SO ON•''

fOfl:l •I TON
INPUT D[1 J
NEXT I
LET J •O
READ R
I f R< O THEN 280
R[AC P
READ Dl
If DI < > 0 TMEN 210
LET J•J+ I
LU RCJJ • R
LET PC JJ•P
GOTO 120
FO R 1• 1 TON
IF DI • nrn THEN 250
NEXT I
GO TO 150
READ 01
IF Dl•O 11iEN 120
GO TO 250

This must be done by typing in new
DATA statements. On computers
that have file commands. the program
can be written so that the computer
makes its own changes in DATA.

If J <> 0 THEN 320
PRINT PRl~ T "'SORRY1 NO ROOMS ARE AVAILABLE FOR ALL DAYS REQUESTED• ..

GO to 500
PRINT
FOR l• I TO J
PRINT .. ROOM"1 RC I lJ" IS AVAILABLE ON OATES REQUES TEt.•"'
PRINT O RAT£ l S S"J PC I JJ .. PEA CAY• ..
Pfl!NT
~EXT I
PRINT .. \lU CH ROOM 00 YOU \ii SH .. J
I NPUT R
PRIN T " YOUR RESERVATION I S CONFIRMED•"
P RINT
PRI NT - --- -- --TEAR HFRE---- - - -------- ••

PRINT
PR INT "'MEMO to RESERVAT ION SI ENTER NE~ DA TA FOR ROOM"'J R"•"
PRINT '"At'O '"J
f OR I • I 'TO N• l
PR INT D(J] J '"# "•
NEXT I

: : ::~ OC NJ J-• TO PRESENT OATA• ..

; ~~N: • ~•-~-;-- - - •- --- ----- - TEAR HERE----- - ---- - - - - -- -- -- "

PR INT
NEXT J
STOP

129

..

130

560
570
580
590
600
610
620

•
DATA 90l, ,a,., .. oe.4•1 , 0
DATA 902,.16•4•03,4•08•4•09•0
DATA 903" 11• 3.01,. 3•02, 4•0'b 4•05, 4•08,0
DATA 904,14•4•0314•041.0•09,4•1,0
DATA 905,20,4•08,0
DATA - l
mo

<>
0

SPECIAL INFORMATION FOR SOME COMPUTERS

NOTE: We used the code 4.03 for April 3 since all ver .
of BASIC allow DATA statements that use numbers ~ons
ever, it may be that your computer also allows .. ;trinow,;
(check the index in your computer reference manuaii95
so, you can also store alphabetic information. Even bette:'
if your computer allows fife commands, you can use th ·
instead of DATA statements. You' ll have to read about usese
file commands by yourself , since they differ with ev~~

computer.

, .

Program 2: / AIR RESERV/

This reservation_ program uses a slightly dilfertn1
method for stonng and checking data. Take-A.
Chance-l ntemational Airlines (T ACI-Air)kee,s
the information on how many seats arc available
on each of their two daily flights in 1hc doubl<­
subscript variables A(IJ) (for flighl I) and B(IJl
(for flight 2). The subscript I rcprcscnl! lht
month, and J the day of the monlh. Thus,

~ -.... . ~~- LET 6(11,8)=3

would be a way of storing in the computer the information 1ha11hen
are 3 seats available on flight 2 on November 8.

TACI-Air keeps current records for two months. The follo•·ini
program is for January and February. The program assumes 1h21
3 passenger seats are available on each plane al the start. E.<c~
tions to this rule are then handled with READ-DATA s1alemtD~-

Here's a sample RUN :

RIJI

TACI-AI R RESERVATION SYSTD1

··························· ENTER MONffl• DAY• fl.I G<T NO., NO• OF SEATS DESI REDll • li •

2

'

1

~ ~~T~~~ CO~F~~E~g~H:;I ~~E~~~T~O~~ < ~~p~6. ,OR y(S,

oFORN0>11

I~ so
60
10
eo
90
100
11 0
12 0
130
140
150
160
110
160
19 0
200
210
220
2 30
240
250
260
210
11110
290
300
31 0
320
330
340
350
360
310
380
390

SORRY-- NOT D,10UGH SEATS AVAILABLE: ON iHAT fl.JGHy.
[X) YOU wr SH TO TRY ANOTHER RESERVATION (TYPE I FOR Y[

O FOR NO>? 1 S,

ENTER MONTH• DAY1 FLIGHT NO., NO• OF SEATS D[SJR[D?J .- 5,., l.o t

I SEAT< S> CONFIRMED ON fLI GHT NO . 1 0 ~ I/ S
[X) YOU WISH TO TRY ANOTHER RESERVATION <TYPE 1 fOR YES,

o FOR NO>?O

~;;;;~E TO RESERVATIONS AGENTI °'TER-;;~-;;;;•-••--•
STATEMEiVT< S> BEFORE Rt.NNING THIS PRGRM AGAIN•

Here's a LISTing of the program /AIR RESERV/

DIM AC I 3, J l J , BC I 3 , 31 l
f0'1: I•I TO 2
FOR J• I TO 31
LET ACI ., Jl• 3
LET ect .-JJ•J
~EX T J ~~~1.: 2, 29 1 •• , 2 , 301-•c 2, 311• 01_ These steps remove the extra days I
LET ec2,2•1-ec2,301 ■ec2,3tJ• g from February (not a leap year).

REA D J.-J
If J•l3 THEN 140
READ A(J.-JJ,BC I,Jl

::;:~/?.~ACI -AIR RESERVATION SYSTEM "
PRINT .. ••••••••••••••••••••••••• ••••

:::~: "'DJTER MONTH, DAY.t FLIGHT NO•.o NO• OF SEATS t:ESIREO-•J:

INPUT M.-&,F.-N
PR INT
GO TO f' OF 2 10.- 250
J f A(f'I.- DJ•N THEN 290
PRINT NJ: .. SEATCS> CONFIRMED ON FLIGHT NO• .. JFJ:"' ON"HU .. /"'10
LET A[Pf., DJ•ACM, Dl -N
GO TO 300
l F PC M.o DJ•N THEN 290
PRINT NJ'' SEAT<S> CONFl~ED ON FLIGHT NO•"JJ"Ju ON".IMJ"'/"JD
LET BCM.o Dl•BCP'l.t Dl•N
0010 300
PRINT .. SORRY--NO T INOUa. SEATS AVAILABLE ON THAT FLI an ...
PRJNT .. 00 YO U WI SH TO TRY ANO THEA RESERVATION < TYPE J FOR YES.-"
PRINT .. 0 FOR NO>".I
INPUT A
[1' A•l THIN 160
PRINT
PRINT "- -- ---- ---•------- • -- -- - -- - -----•-•-•••--•••·-••--- •- ..
PRI NT "MESSAGE TO RESERVATIONS AGENTr ENTER NE\ DATA ..
PRINT "S TAT.EMENT<S> SEfORF Rt.NNlNG TH_J..S.....EJ!O GRAM ACAlN•"
DATA 1.- 2 ., 2 .- 2 , 1.t 3.t 2, 1.- J., 4, 1.- I, J.t 5.t 1, o~~--- -----~~~
rno The first " 13" stops the

READ of line 100. The
last " 13" is needed to
prevent an OUT OF
DATA message.

Lines 20 to 70 put a "3" in each of the variables A(I ,J) and B(I.J).
This is the number of seats normally available on one of TAC l's
flights. C hanges in rhis number are taken care ofby the READ and
DAT A sratements (100, I 20, and 380). For example.

380 DATA 1,2,2,2

means that on Jan6ary ~ . ~ B have only M o seat s left.

131

•

S60 DATA 901 .. 1e .. ,a.oe.4.1,o
570 DATA 902,16•4•03,4, 08,4, 09 , 0
S80 DATA 903• l '1• 3• 01, 3•02, 4•04, 4•0 5,, •h08, 0
S90 DATA 904,14,4•03•4•04.t4•09,4•l•0
600 DATA 905,20, 4•08,0
610 DATA -1
620 END

SPECIAL INFORMATION FOR SOME COMPUTERS

NOTE: We used the code 4.03 for April 3 since all versions
of BASIC allow DATA statements that use numbers. How­
ever, it may be that your computer also allows " strings"
(check the index in your computer reference manual). If
so, you can also store alphabetic information. Even better,
if your computer allows file commands, you can use these
instead of DATA statements. You 'll have to read about using
f ile commands by yoursel f, since they differ with every
computer.

•
Program 2: / AIR RESERV/

This reservation program uses a slightly different
method for storing and checking data. Take-A­
Chance-International Airlines (TAC I-Air) keeps
the information on how many seats are available
on each of their two daily flights in the double­
subscript variables A(l,J) (for flight I) and B(l ,J)
(for flight 2). The subscript I represents the
month, and J the day of the month. Thus, ,---7'~ · -

130

0 ~-
LET 8(11,8)=3

would be a way of storing in the computer the information that there
are 3 seats available on flight 2 on November 8.

TACI -Air keeps current records for two months. The following
program is for January and February. The program assumes that
3 passenger seats are available on each plane at the start. Excep­
tions to this rule are then handled with READ-DA TA statements.

Here's a sample RUN:

RIJ'I

TACI - AIR RESERVATION SYSTEM

•••••••••••••••••••••••••••
ENT ER MONTH, DAY, Fl.l GIT NQ., NO, Of SEATS DESIRED! 1,18 , 2 , 2

2 SEAT < S > CONFIRMED ON FLI GH T NO, 2 ON 1/ 18
DO YOU ~ I SH TO TRY ANOTH ER HESERVATI ON C TYPE I FOR YFS•

0 FOR NO >1 1

EN TER MONTH, DAY, FL I GHT NQ., NO • Of SEA TS DESI RED1 1, S, 2d

•

SORRY--NOT ENOUGH SEATS AVAILABLE 0~ THAT I LIGHT,
00 YOU WI SH TO TRY ANOTHER RESERVATION < TYP E I FOR YES,

0 FOR N0>7 I

ENTER MONTH, DAY, FL(GHT NO .. NO- or SEATS DESIRED! I, s, I • I

I SEAT<S> CONFIRME D ON FLIGHT NO, i 0 ~ II S
00 YOU WI SH TO TRY ANOTHER RESERVATION C TYPE I f'O R YES,

0 FO R NOl10

.... --------------------· -------· --·-.. -------.. ---·-.. -·-
MES SAGE TO RE SERVATION S AGENT! ENTER NEW DATA
STATEl'IENT< S> BEFORE RIJ'INING THI S PRGRAH AGAIN•

Here's a LISTing of the program /AIR RESERV/.

10 DI!'! AC 13>31 J, BC! 3• 311
20 FOR l•I TO 2
30 fO R J•I TO 31
40 LET ACl,Jl•3
SO LET 811 , Jl•J
60 NEXT J
70 NEXT I
80 LET Ac2,29J•At 2,301•At 2 ,311• ot- These steps remove the extra days
90 LET BC2, 29l•BC2, 30l•BC2,Jll • g from February (not a leap year).
100 READ l , J
110 If 1•13 THEN 140
120 READ ACl,Jl,BCl,Jl
130 GOTO 100
140 P RI NT "TACI-AIR RESERVATION SYSTEM"
150 PRINT .. ••••••••••••••••••••••••••• ..
160 P RINT
170 PRINT "ENTER MONTH, DAY, FLIGHT NO .. NO• or S EATS t ESIRED"J
180 INPUT M, D, F, N
190 P RINT
200 GOTO F OF 210,250
2 10 IF ACM, Dl<N THEN 290
220 PRINT NJ " SEAT<S> C0N flfll1ED ON FLIGHT NO • .. l fJ " ON"JMJ"/"; O
2 30 LET ACM, Dl•ACM, Dl•N
240 GO TO JOO
250 I F ECM, DJ<N THEN 290
2 60 PRINT NI" SEAT(Sl CONFlll>IED ON FLIGHT NO,"lfl" ON"J MJ "/"I D
2 10 L ET B(M,. Dl•BCM• Dl•N
280 GOTO 300
290 PRINT " SORRY--NOT ENOUGI SEATS AVAILABLE ON THAT FL! GIT,"
300 PRINT "DO YOU WI SH TO TRY ANOTHER RESERVATION (TYPE I FOR YES,"
3 10 PRINT " 0 f'OR NOl"l
320 INPUT A
330 I F A• I THEN 160
340 PRINT
350 PRINT " ••- • -- • • -- • ••---•• - -- - --· • • · -·-- -- - --- - - · - -----••- --- "
360 PRINT ''MESSA GE TO RESERVATION S AGEN T! ENTER NH DATA"
3 70 PRINT " STATEMENT< S> BEFORF RUNNING TH~GRAM AGAIN•"
380 DATA t, 2,2, 2, 1 .. 3. 2 ,. t, 1, 4, 1, I, 1, 5, t, O~ ,----------.,_~
390 EN D The first " 13" stops the

READ of line 100. The
last " 13" is needed to

- ----- ------- 1 prevent an OUT OF
DATA message.

Lines 20 to 70 put a " 3" in each of the variables A(l ,J) and 8(1,J).
This is the number of seats normally available on one of TAC l's
flights. Changes in this number are taken care of by the REA D and
DATA statements (100, 120, and 380). For example,

380 DATA 1,2,2,2::::----....._

means that on Janfuy \ . ~ A arnfB have only twv seats left.

131

~

132

Suggested Explorations:

1. Add statements to /AIR RESERV/ which automatically tell
the reservation agent what new DATA should be added t
statement 380 before running the program again.

0

2. Inventory Control : Harry Hardsell is a salesman for the Ace
Hardware Company. He is in Chicago and has a customer Who
wishes to order 7842 left-handed, brass-plated bolts, stock
number 809, and 87 model-302 red buckets. Harry mutters to
himself, " Oh, if only I could dial a computer at company head­
quarters in Oshkosh, and using my portable terminal, RUN a
program that would tell me how many of each of these items
are in stock for immediate delivery, the price of each, and the
total bill less 5% cash discount." Can you write a program for
Harry that does these things for any one of ten different
products?

4-2 Nonnumeric Applications

We tend to think of computers as calculating machines which work
only with numbers. This is not completely true. Computers can also
do things with words and letters. We'll show two interesting ex­
amples of this that work on even the simplest minicomputers.

- lr
Program 3: /SOAP/

Have you ever wondered how names for cereals, detergents, and
such are chosen? We'll probably never know, but let's see what a
computer might do.

Study the print-out at the top of the next page.

R~

PROGRAM TO GENERATE NAMES BEGINNING lol TH 'GI. •

(LAS

(LES

(LIS

CLOS

GI.US

GI.AP GI.AT CLAR Cl.AB

G.EP GL£T G.ER GLEP

CLIP GLIT GI.IR GLIB

GLOP GLOT GLOR GI.OB

Ci.UP GLUT GLUR GLUB

The trick to /SOAP/ is to use nested FOR loops. Our program
always starts the name of the soap with GL. It uses the FO R loop
starting in line 120 to choose a vowel. It uses the FOR loop in
line 130 to add each of the consonants S, P, T , R, and B. Then it
goes back and tries a second vowel. and so on. Here is a LISTing:

100 PRINT "PROGRAl'I TO GENERATE NAl!ES BEGINNING w! TH ' GI. ' "
110 PRINT
120 FOR I• I 11) S
130 FOR J•I 10 5
140 PRINT "GL"J
I SO GO ro I Of 160• 180,200,220, 240
160 PRINT "A"J
170 GOTO 250
180 PRINT "E"l
190 0010 250
200 PRINT "I "I
210 0010 250
220 PRINT "O"l
230 ooro 250
240 PRINT "U"J
250 GO ro J Of 260, 280• 300, 320, 340
260 PRINT "S",
270 GOTO 350
280 PRINT ttpn,
290 GOTO 350
300 PRINT "T",
310 GOTO 350
320 PRINT "R",
330 0010 350
340 PRINT "B",
350 NEXT J
360 NEXT I
370 END

~ ~/.
Program 4: /MENU/

Let's suppose that you have just become vice­
president in charge of promotion for Gus's
Restaurant. You decide to introduce a novelty
- a terminal at every table where a customer
can custom-order his meal. An example .of what
might happen is shown on the next page.

I

133

134

RIJ'l

+++ THE AUTOMATEr RESTAURANT ++ ♦

THIS IS GUS'S ROBOT READY TO HFLP YOU Sli.ECT YOUP. MEAL,

TYPE THE NU'1BER or YOUR SELECTION AFTER EACH '1 '·

I• TO:-IATO JUI CE<, I 5>, 2• GRAPEFRUIT<• JO> • J• CLAo~ CHO •CERc,
4011 !•HAMBURGER(• 60 >, 2• CHEESEBURGER<• 70 >, 3-HO l 00 t<. 50>1 3 2

l•MUSTARN • 00>, 2•CATSUP< • OO>, 3•N0THING1 t
!•APPLE PIE<•30>,2•1CE CREAM<,20>,3•CHOCOLATE CAKEc,25>lJ
l•COFf EFC • I 5>, 2-SOl'T DP.INK(• I 5>, 3•MILKC, 15)1 J

ORDER 10 COOK I A 2, E 3, C I, D J, B I

•••••• ANNOt.NCJNG
YOUR CUSTOM-TAILORED DINNER

STARTING WI TH

•••• S•'EET PINK•CENTFRH C-RAPEFR~l T

AND FEATURING

•••• A SUCCU.ENT HOT toG SMOTHERED •I TH MUSTAR D

AN r FOR DESSERT
••RICH MOIST CHOCOLATE CAKF

to,'NH 1'I TH
•FRESH-BREWED COFFEE

OH, YES, YOUR BILL IS S 1•2•
YOUR SUGGESTED TIP IS S • 18•

VERY NI CE SERVING YOU, COME AGAIN,

Here is a LISTing of /MENU/.

10 PRINT "+ ++ THE AUTOMATEt RESTAURA.\IT ++•••
20 PRI NT
JO PRI NT "THI S I S GUS ' S ROBOT READY TO HELP YOU SELECT YOUF. MEAL, "
• O PRI NT
50 PRINT " TYPE T}l[Nll"BER o r YO UR S!LECllON AFTER EACH ' 1 ',"
60 PRIN T
70 PRIN T "!• TOMATO JUI CEC,J 5 >, 2•rnAPEF!iUI TC • 30l, 3<CLAM CHOWDER< •40 l " ;
AO I NPUT A
90 PR I NT " l •HAMBURGER< • 60> , 2•CHEESEBUf<HRC, 'i0> , 3•HOT OOG< , SO>";
I 00 IN PU T E
11 0 PA I NT "' l =M USTAROC • 00),. 2• CA T SUP C • 00 >, 3•NOTH1N G";
120 I NPUT C
130 PR I NT " lsAPPLF PIE<• 30), 2c JCE CREAMC. 20>, J•CHOCOLATE CAJ< E.<• 25>";
14 0 I NPUT I'
150 PP.I:'IIT "'J •CO FF"EE<•I S>, 2 • SOFT DR JNK< •l 5 b 3a:~J LK < • l5>";
160 I NPU T P
170 PPINT
180 PR I NT
190 PR INT "OP.DER TO COOK: A"; A;", E"; E.; ", C" i Ci", D"; D;", B" i B
200 P R INT
2 10 PR INT
220 L ET P• O
230 PRIN T ""•••••• tlN/IJOLNCJNG •-- "
240 PRINT " YOUR CUS TOM· TAI LORED DI NNER"
250 PR I NT

260 PRINT "STARTING Ill TH"
270 GOTO A OF 280,310,340
280 PRINT "•••• TANTALIZING TOMATO JUICE"
290 LET P•P••IS
300 GOTO 360
310 PRINT "•••• SWEET PINK•CEN TEREil GRAPEFRUIT"
320 LET P•P+•J
330 GOTO 36C
340 PRINT "•••• DELICIOUS CLAM CHOWDER"
350 LET P•P••4
360 PRINT
370 PRINT "AND HATURING"
380 GO TO F OF 390,420, 450
390 PRINT "++•• A SIZZLING HN1£1URG£R";
400 LET P•P+ • 6
1110 GOTO 470
420 PRINT "•••• A SIZZLING CHEESEBURGER";
430 LET P.P+,7
440 C-0 TO 4 70
450 PRINT "•••• A SUCCU.!NT HOT toG"l
460 LET P.P+,5
470 GOTO C OF 480, 500, 520
480 PAINT " SMOTHERED ,I TH MUSTARD"
490 GO TO 530
500 PRINT " SMOTHERED WI TH CAT SUP"
510 GOTO 530
520 PRINT
530 PRINT
540 PRINT "A. ... D FOR DESSERT"
550 GO TO D Or 560, 590,620
560 PR rn t " .. MOTHER'S APPLE Pl E"
570 LET p.p+,3
580 GOTO 640
59(\ PRINT " .. CHA~Y ICE CREAM"
600 LET P.P+•2
610 GOTO 640
620 PRINT RI CH MO! ST CHO COLA Tl CAKE"
630 LET pap+,?5
640 PRINT
650 PP.INT "DOlotlH ~ITH"
660 00 TO F Or 670,700,730
670 PRINT "•FRESH•eRHFD COfFEF"
6£'0 LET P•P•• IS
690 OOTO 75(1
700 PRINT "HE>RlSHING SOFT tRINK"
710 LET pap+,15
720 GOTO 750
730 PRINT "•WHOLESOME VITAMIN·L'IRICHED MILK"
7~ LET P•P+• 15
750 PAINT
760 PRINT
770 PRINT "OH• YES, YOUR PILL 15 sn; p;","
780 LET Pl•INTCCP••l!>••OOS)•IOOJ/ 100
790 PRINT "YOUR SUGGESTED TIP IS $";P II"• "
800 PAINT
810 PRINT "VERY NICE SERVING YOU, COME AGAI~ • "
~20 ENO

Suggested Explorations:

1. Write a program that will generate names for musical groups.
For example, you might generate names by combining adjec­
tives, colors, and animals (producing such names as HAPPY
PURPLE CHICKEN, OUTRAGEOUS ORANGE OSTRICH).

2. Write a program that produces sentences of the form
THE (noun) (verb) (adverb).

135

..J

,,

(

r- - -- 7
I Fust I
I Wtndow

I

I

I
I

I

CHERRY

136

' /

4-3 Games and Simulations

Although many people think of games as being used only for recre· _
tion. comput~r games can also serve serious purposes. For exampl:.
computer sc1ent1sts have programmed games hke chess in order

1
study the question of "machine intelligence." Simulations (program 0

that imitate something) are often combined with games to help stud:
complex ideas.

Program 5: /SLOT MACHINE/

This program simulates (acts like) a machine that has 3 "windows ...
A picture of an orange. a lemon, or a cherry appears in each window
each time you put in money (50 cents in our machine) and pul l the
imaginary handle. If all three pictures are the same, you win $3.00.
If not. you lose your 50 cents.

One way of figuring your odds for winning is to

r - - - - , ,------.

draw a diagram like that shown at the left below.
The winning combinations are marked with the
symbol •. You can see that although there are
27 possible combinations. only 3 of these are
"winners."

I Second
I Wmdow
I

I Third 1
Window I

I
I

1 ~~~~-~y 1•

~ vncnn, i
~ ORANGE ' ; ' c .. - .. I

~ v n c nn, j
), CHERRY ' ' LEMON • I I I I

Here are all the 27 possible paths:t the
"winning" combinations are ringed .

(@) CCL cco
C LC CLL CLO
coc COL coo
LCC LCL LCO
LLC crJD LLO
LOC LOL LOO

occ OCL oco
OLC OLL OLO
ooc OOL ~

A mathematician would say that your prob­
ability of winning on this machi ne is:

p = No. of winning combinations_ l_ _ !
No. of possible combinations - 27 - 9

In other words. if you played 90 times. you

would win about i of the time. or 10 times.

Playing 90 times would cost you $45.
Winning 10 times would give you $30.

So you can see that on the average the owner of
the machine would make $15 on every 90 plays.
In other words, in the long run. on this machine
you lose. he wins. A sample RUN of this pro­
gram is given on the next page.

t C hallenge : Write a program that will print out this list.

~

RLN

nn S IS P , . 50 SLOT MACHINE,
PAYOFF IS SJ FOR 3 CIIERP.I ES, 3 Lil'IONS, OR 3 OnANHS,
ALL OT!iER COMBINATIONS LOSl,
HO, IIA.~Y 50- CENT PIECES 00 YOU ~'ANT TO USE I~ PLAY76
YO L1 S TART wl TH I 3
00 YOU i, J SH TO PLAY < TYPE I FOR YES, 0 FOR ~On 1
SSSORANG[USII I L!MO~II I IIII.EIIONIII 100 BA!i-- YOU LOST S,5Q,

YOU NOW HPVF S 2•5
00 YOU Ii i SH lO PLAY < TYPF I fOR YES, 0 t OP. NO)1 I
tUORANGESSSUSORANGFSUU•CHERRY .. • TOO EA[••YOU LO ST l,5Q,

YOU NOW HAVES 2
00 YOU WI SH lO PLAY < TYPE I FOR ns, 0 FOR Non t
IIILE~0,H IIIIII. D'10N III IIII.Il'ION II I ~REAT- -YOU l,()N 13,

YOU NO~ HPVE I 5
00 YOU WISH TO PLAY <TYPE I FOR YES, 0 FOR ~0>1 1
Ut0RA.~G[USII IL EMON IIIIIII. D10N III TOO FP!i--YOU LO ST I• 50,

YOU NOW HAV E S 4 • 5
00 YOU i,I SH TO PLAY < TYPE I fO R YES, 0 FOR NO>J t
IIILFl'ION II ISSSO RANGESUSUORA.~GESU 100 FAD--YO U LOST S, 50 ,

YOU NOi. HAVE S 4
[O YOU WI SH TO PLAY < TYPE I FOR YES, 0 FOR NOH I
**•CHERRYUOSSSORAN ~[USSUORANGEUS 100 PAC- - YOU LOST S, 50•

YOU NOi. HAVES 3 • 5
00 YOU ~I SH TO PLAY < TYPE I FOR YES, 0 FOfi NOl1 I
***CHERRY**•USOP.ANGESUUSORANC[US 100 BA!'--YOU LOSl h 50 •

YOU NOW HAVE S 3
00 YOU lo ! SH TO PLAY < TYJ>l I FOR YES, 0 FOh ~Ul11
,,, L D10 Nlll** * CHERRY**HUORA.~GESU 100 BAL--YOU LOS T S,50 •

YOU NOW HAVE S 2• 5
00 YOU ~I SH lO PLAY < TYPE I FOR Yrs, 0 fOR NOH I
IIIL D10N IIIUSORANGESUII I L EMON III TOO BAL,-•YOU LO S T 1•50 •

VOU NOW HAVE S 2
00 YOU Iii SH lO PLAY < TYPE I fOR YFS, 0 fOR NU >11
,, , L EMO~.Ulf•••CHFRRY••· ·• • CHERRY•• · TOO PAr--vou LO ST , . 50 •

YOU NOi. HPV[S t • 5
00 YOU WI SH lO PLAY C TYPE I FOR YES, 0 FOR ,~OH I
IIILFMON III USORANG£UUIILEMONII I TOO BAL- -YOU LOST I• 50•

YOU NO• HAVE S I
00 YOU Iii SH lO PLAY < TYPE I FOR yrs, 0 FOR NO l1 I
IUORANGESU II ILEMONlll**•CHERP.Y*** 100 BAt--YOU LOST I• 50•

YOU NOW HAVl S • 5
[O YOU WISH TO PLAY (TYPE I FOR YlS• 0 FOR NOH !
I IILF>ION lll .. *CHERRY••• SUORANG[US 100 BAD--YOlJ LOST S, 50•

YOU HAVE LOST ALL YOUR MONfY,
~RRY APOUT THPT

To simulate selecting one of the three "pictures," we use the BASIC
statement (see page 138):

160 LET N=INT(3•RND(l))+1

This gives us a I, a 2, or a 3 for N. Then by using

170 GOTO N OF 180, 210, 240
(or 170 ON N GOTO 180, 210, 240 on some computers)

our program branches to a line that prints one of the
"CHERRY," "LEMON," or "ORANGE."

words
137

--,

10
20
30
40
so
60
7n
RO
90
1no
l 10
120
l~O
140
150
160
170
180
190
200
2 10
220
230
? 40
250
?60
2 70
280
290
300
31 0
320
330
340
350
360
370
380
390
uOO
• 10
420

.__

138

Here's a LISTing of the program for you to study.

Pli!NT " TH !~ !SA 1•50 SLOT MACH I N£, "
PR! NT "PAYOFF l S 13 FOR 3 CHEnnlES, 3 LEMON S, OR 3 Ol<ANHS•"
Fn!N T "ALL OTH ER COMP!NAT IONS LO Sf• "
PRINT "HOW MANY 50-CE.~1 PIECES 10 YOU ~'ANT TO USE. IN PLAY";
INPl,T ~
L ET M•M•• 5
PRINT " YOU STnPT ~I TH I," ;:,:
L ET X•RNDC- I> <~FF PAf.F 116 • >
PRIN T "00 YOU ~ I SH TO ~LAY c TYPE I FOR ns, 0 FOP NO)";

INPUT A
I F lli•O THEN 410

C, L, and 01 wi ll keep count of LfT C• O J UT L •O how many cherries, lemons, L ET OI•Q
or oranges came up for you. fOR l•I 3

LET N•J NTCJ• ~DCl>>+I
GOTO N OF IRO, 2 10, 240

,. .. , ~rn.,. l
L ET C= C+ I

Here·s where your 3 " w indow" 00 TO 260
PRINT " 111Lil"I0N1 11" J pictures are made by the random
Lfl L• L+ 1

generator. GOTO 260
PRINT " IUORANGEIU" ;
LET 01•01+1
NEXT l

l f L •3 THEN 350 ; Determines if you won. IF 01= 3 THEN 350

!F C•3 1HEN 350]

PRINT " TOO e Al>' - YOU LOST l • 50• "
1 Takes 50 cents from you. LET M•M- • S

PRINT
l f l<•O THEN 400
GO TO 380
PP INT " GREAT- - YOU loO N 13 , "
L ET M•M+ 3 t

Checks to see if you have I
any money left.

~ Gives you $3.00. j
PH INT
PR I NT " YOU ~ O\J HAVE S"JM
GO TO 9 0
PRI NT " YOU HAVE LOST ALL YOUR MONEY•"
PRIN T " SORRY ABOUT 1HA1"
~ D

Program 6: /BURIED TREASURE/

To play this game you need a I O by IO grid like the one shown al the
top of the next page. The computer will randomly , elec1 a rec1an­
gular block of 4 adjacent squares (horizontally or veriicall y) to repre•
sent a "buried treasure." You are to try to locate it by "digging
holes." The remaining instructions are given in the program. A
sample RU N is given on the next page.

f I I I I I I
/0

9

8

1

6

,
Jf

3

;.

, r I I I r:
2 3 II 5'

RUN

YOU \/ILL NFFr O 10 BY 10 Gl<! D TO REn R TO l.N PLOYING THI S
THE CO~PUTEI' HAS BURI FD A ' 1REASUPE' I N A FO UR- SOUAR£

REC10.~GUL•R RE6l ON Ill TH I N THE GR ID• YOU CAN Dl G 10
HST HOLES ! N AN MTFRNOON• YOU RfPRESFN T THE L OCA-
T! (ltj Of F•CH HOL E BY TYP IN G • N x - c OORD!NPTE, A COMMA,
AN D A Y- COORDI NATl•

UHEkE 00 YOU \/ON T YOUR FIRST HOL l ? I, I
NOTHIN G THERE--~O• OF TRilS LEFTt 9

NEXT HOLEl 2, 2
NOTHING THERE--NO• OF T?. I LS LEFT:

NU: T HOLE? 3 , 3
NOTHI NG THERE·-NO • OF TP.!ES LEFTt

Nf)l'T HOLE?lhti
NO THJNC, TH f PE--NO, OF TF.IFS LFF Tt (,

NFX1 MOLE?~ .. ~
NOTHING THERE--NO, OF TR l f S L EfTt s

NEX T HOLE.1 6, 6
NOTHING THERE--lllO • OF TRIFS LEFT:

Nt:XT HOL F?'h .,
EUR EMA- -YOU FOUND l T I

I I 17

GAMf •

A LISTing of this program is given on the next page.

11

139

I
140

Here's a LISTing of this program for you to study.

10 PRINT "YOU WILL NEED A 10 BY 10 GRID 10 R[f[R 10 IN JILAYING"I
20 PRINT " THIS GAME,"
30 PRINT "TIIE COIIPUT£R HAS BUIUi:D A 'TREASURE' IN A FOUR-SQUARE"
40 PRINT " Rl!:CTANGlLAR REGION 1111lllll THE GRIO. YOU CAN DIG 10"
50 PRINT " TEST HOL£S IN AN AFTtllt0ON, YOU 11£PR£SDIT TH£ L0CA•"
60 PRINT " TION OF EACH HOLi!: BY TYPING NI X•OO0RDlllATt, A COIMA,"
70 PRINT " AND A Y•C00IIDINATl•"
80 PRINT
90 LIT X•RND<·t>
100 LET Z•INT<2•RND<l 1•1 I
110 GOTO z or 120,190
120 LU XC ll•INT<~RND<ll•I>
130 LET Yt ll•INT<IO♦RND<ll+Jl
140 POii l•e TO 4
150 L[T Xtll•Xtl•Jl+I
160 LU Ytll•Ytl·ll
170 NDCT I
180 QOTO 250
190 LET XC ll•INT< IOOND< 1 l• I I
200 LET Yt ll•INT< ~RHDII >• I l
210 FOR 1•2 TO 4
220 LU Xtll•Xtl•ll
230 LET Ytll•Ytl•tl• l
240 NDT I
250 LET S• 10
260 PRUIT

NOTE: Our coordinates for th is
problem differ from the usual
Cartesian coordinates, which
name points. Our coordinates
identify squares.

270
280
290
300
310
320
330
340
350
360
370
3110
390
400
410
420
430
.,.0
450
~60
470
480

PRINT "liHERE IO YOU WANT YOUR Fl 11ST HOLE"I
INPUT X,Y
FOR l•l TO 4
IF X <> Xtl l THIN 320
IF Y•Yt ll TH!N 470
NEXT I
PRINT "l'I0THING THERE••"I
LET S•S•J
IF S-0 THDI 400
PRINT "1'10 , OF TRIES L!FT1 "IS
PRINT
PRI NT "l'IEXT IIOLE"I
GOTO 2110
l'lllNT "TIME TO GO HONE•
PRINT "THE TREASURE ~AS LOCATE~ AT •1
FOR l•l TO 3
PRINT H("JXl?H"•"IY[llJ''>• "J
NEXT I
PRINT" AN.C <"JXCIIH", "JYC4lJ"h 0

STOP
PRINT "EIJRD<A••Y0U FOUNP !Tl"
END

,

Challenge: If you increase the number of tries to 16, can you
devise a strategy that will always win?

Suggested Explorations:

1. Write a program that plays another game. If you need ideas,
see if your library has a copy of Game Playing with Computers
by Donald D. Spencer (Spartan, 1968).

2. Modify / BURIED TREASURE/ so that when you have missed,
the computer tells you whether your X- and Y-coordinates
were too large or too small. What is the minimum number
of tries you now need to insure winning?

Amount borrowed
(principal)

4-4 Business Applications

More and more business operations are being handled with the aid
of computers. I n this section we'll look at some applications that
involve the financial side of business.

Let's suppose that you want to start your own business. To get
started. you'll have to borrow money. The " rent" that you'll have to
pay on your loan is called i111eres1. Interest is calculated by multiply­
ing the amount borrowed, by the interest rule per year. and then
multiplying this answer by the number of years you wish to borrow
the money. (Interest rates are usually given as a percent per year.)

EXAMPLE: Suppose that you borrow $1,000 at 8% per year for
two years. How much " rent" (interest) must be paid?

1000 • .08 • 2 = 80• 2=$160

Of course. in addition to paying the $160 interest. you ·11 also have
to pay back the $1,000! Now comes the catch - you'll be expected
to pay this back in monthly installments. starting right away (not 2

years from now).

Question: Even though I start paying back the money I borrowed
right away, do I have to pay interest on the full amount ? The
answer is usually yes. Let's see how this works.

141

-----....

142

Program 7: /ADD-ON/

"Add-on" interest is charged by most finance companies. Th·
means that the interest is added to the principal right away, and th is

. I . hi . I at you then pay back this /()/a amount in mont Y mstal ments. Here's
a program that calculates the monthly installments for a loan or
$18.000, paid back over 5 years (60 months) at the rate or 6.S%
per year "add-on" interest.

Rl.N

I NSTALLMENT PAYMEN TS WI l H ADD-ON I NHREST

AMOUIIT OORRO\o'ED <PRINCI PAL) •118000
11/'lNUAL I NTER£ST RAT£ < t FCI MAI. > •1 • 065
NL'°'PER OF MONTHS TO REPAY THF LOAN •160

YOL' PAY I 397• 5 EACH MONTH FOR THE NEXT 60 MONTHS•
INTfRfST YOl• AR£ PAYI N~ EACH MONTH IS I 9 7, 5

AT THF !Nt OF 5 YFAASI

PRINCIPAL REPAID
IPOOO

TOTAL INTEREST
5850

Sll'I OF TH£ PAYMEN TS
23850

The total interest is computed by using this formula:

Tota l interest=(Principal)(lnterest rate)(No. of years)

The monthly installment is found as follows:

M thl . t 11 t _ Principal+ Total interest
on Y ms a men - No. of months

You will find these formulas in lines I 00 and 11 0 of the following
progr.im:

10 PR INT " INSTALLM ENT PAYMENTS lo l TH AtD-ON I NTEREST"
20 PPINT
30 PRINT "AMOUNT BORRO lo Et <FRJNCI FAL> • "l
•O I NPUT P
SO PRINT "A.'l'IUAL INTEREST RA TE C DECI MAL> • "J
60 INPUT I
70 PRI NT " Nl'MBER or MONTHS TO REPAY THE LOA.'I • " l
80 I NPUT M
90 PRINT
100 LET T•P• l•<Mll 2)
110 LET Ml •<P+T)/M
120 LET ll•T/M
130 PRINT ' 'YOU PAY 5"lMll" EACH MONTH FOR THE NEXT"JHJ " MONTHS• "
140 PRI NT "INTEREST YOU ARE PAYING EACH MONTH I S 5"111
150 PRINT
160 PRlNT 0 tliT THE ENC OF"H11 12J •• YEARSt ..
l 70 PRINT
180 PRINT " PRINCI PAL REPAlt" l TAP<20 >J " TOTAL IN TEREST" l
190 PRIN T T~ 8 (40) J"SL!i": OJ- THE PAY!'<'llN T S"
200 PRINT Pl TABC 20ll Tl TAB<•O>Hl• HI
210 EN D

Notice that in /ADD-ON/ the borrower paid five years' interest
on the full amount borrowed, even though he began paying part of
it back each month.

RUN

On large loans to well-established companies. banks sometime,
compute the interest on only the 1111p11id baia,w,• (amount still
owed). This is a more complicated calculation, and the computer
can be a real help.

Program 8: /UNPAID-BAL INT/

Let's now look at the RUN of a program that calculates the monthly
payments on an $18.000 five-year loan at 6.5% interest computed on
the unpaid balance for each month. Our program has the extra
feature of showing how to split the payments (shares) among ~everal
"partners" (3 in our example).

INSTALLMENT PAYM!l'ITS ~I TH INTFREST ON UNPA I D BALA.~CE

AHOUII T BORROWED <PRINCI PAL > •718000
A'INUAL IN TEREST RATE < t,ECIMAL> • 7 • 065
NUH~ER OF MONTHS TO REPAY THE LOAN • 7 60
NUMBER OF PARTNERS ~HO BORROHD THE MONEY •13

MONTH PRI NCIPAL O~ED I NTEREST MONTHLY PAYMENT SHAHE

I 18000
2 17700
3 17400
4 17100
5 16800
6 16500
7 16200
6 I 59 00
9 15600
10 15300
I I 15000
12 14700
13 14400

•• 14100
15 I 3800

45 4800
46 4500
• 1 4200
,Q8 3900
19 ~600
50 3300
51 3000
52 2 700
53 2400
54 2 100
55 1~00
56 1500
57 1200
511 900
59 600
60 300

TOTALS PAI D

97• 5 39 7• 5 132• S
95, 8 8 395, 88 131 • 96
94•25 394• 25 131 • 417
9 2 • 63 392• 63 130, 877
9 1 391 130, 333
89, 38 389• 38 129• 793
87• 75 38 7• 75 129•25
ff6• 13 386• 13 128• 71
84• 5 38 4• 5 128• 167
82• 88 362• 88 127• 627
8 1,25 381• 25 127, 083
79 , 63 379. 63 l 26• 543
78 378 126
76• 38 376• 38 125• 46
74, 75 37••75 124,917

26 326 108•667
24• 38 324• 38 108• 127
22• 75 322, 75 107• 58 3
21,13 321• 13 107, 04 3
19 • 5 319• 5 10 6• 5
17,86 317,88 105•96

16•25 3 16• 25 10 5• 417
14•63 314• 63 10 ••677
13 3 13 104•333
11 ,38 31 1• 38 I 03• 79 3
9,75 309• 75 103• 25
8,1 2 308 • 12 I 02 • 70 7

6• 5 306• 5 102• 167

• • 8 8 30 4• 88 IOI • 627
3, 25 303• 2 5 10 1• 08 3

I • 63 301• 63 100 • 543

29 73, 86 20973• 9 69 91 •29

You' ll notice that when interest is calculated on the unpaid balance.
the total interest on $18.000 over five years is $2.973.86. But (see
page 142) it is $5,850 for add-on interest over five years. even though
both calculations used the same rate per year (6.5m . The total add­
on interest is approximately t ll'ice as much as the total interest paid
on the unpaid balance 1

143

~

144

10 LfT Tl•O
20 L£T T2•0
JO L£T T3•0

Here is a listing of the program /UNPAID-BAL INT/:

,q() PRINT " lNSTALLNENT PAYMll-ilTS WITH lNlERlST 0,\1 lNPAl D BALANCE ..
50 PAINT
60 PRINT .. AMOUn OORRO\IE[) <PRINCIPAL> •••1
'70 INPUT P
~O PR1NT "ANNUAL INTEREST RATE <OECJl'IAL > •'"J
90 INPl1T I
aoo PRINT "'Nt.t!BFR or l'IONTliS TO REPAY THE LOAN • "J
l 10 INPUT 14
120 PRINT ''-IU1PER OF PAP1NEJ;S \IHO PORR0\£0 TH[MONEY •"J
130 INPUT N
1110 PRINT
150 LET P l •INT«PIM+ , 005>•100)/100
160 PRINT •~ONllf"J TAE'(10 JJ "PRINCl PAL O\'fD"J TAB< 26) J "'INT[R[ST''J
I 70 PRINT TAP< 4IO)J '""ONTKt.Y PAYP1ENT"I TAEI(60H "SHARE"
urn f'OR J• I TO ..,
19(' LET 1 1•1~1< (1/1 2H l •P>• •OO !>>• I00 >1' 100
200 LET PP•F' l • l1
2 10 LIT ll • T I• 11
220 LET 12• 12• P2
230 LFT Z•P21N
2.QO LET TJ• TJ•Z
250 PRINT JJTAB< I OH P;TAB< 26 H I U 1AE'<.ta0 JJP2 JTABC60) JZ
260 LET P•P·P l
? 70 NEXT J
2@0 PRl~T
2'90 PRINT .. TOTALS PA I D"I TAB(2 6 >i TI J TAB< 40) J T2J TAB< 60)J T
300 FN D

The calculation part of this program is done over and over (60
times) in the FOR loop of lines 180 to 270. The important line to
notice is:

260 LET P= P- P1

This statement reduces the principal by the amount paid. This
means that the interest calculation in line 190 gets smaller and
smaller for each month.

SPECIAL TRICK: The + .005 used in lines 280 and 300
causes the money to be '"rounded off " to the nearest penny.

EXAMPLE: 8/3=2.66667 INT((8/ 3+ .005)• 100)/ 100=2.67

Program 9: /PAYROLL/

Figuring out the paycheck for each employee in a big company is a
lot of work, and computers are used extensively for this job. The
computer also calculates tax deductions and other amounts to be
subtracted from the "gross" pay of an employee. The amount left
is called "net" or "take-home" pay.

Our payroll program will have to make some assumptions:

1. Employees receive their normal "hourly rate" for the first 40
hours each week. After that their rate is multiplied by 1.5 (time
and a half).

t-s. .,....

2_ Tax deductions are made on the following approximate ba~i,:

GROSS WEEKLY PAY $50 OR LESS: NO TAX
GROSS WEEKLY PAY $51 TO S75: 57, TAX WITHHEJ D
GROSS WEEKLY PAY $76 TO $1 00: 107, TAX WITHHELD
GROSS WEEKLY PAY $101 TO $150: 157, TAX WITHHELD
GROSS WEEKLY PAY OVER $150: 20?c TAX WITHHELD

3 Each employee is allowed to specify an amount to be taken out
· of his paycheck and deposited in a savings plan.

Here's a RUN of our program. The OUTPUT is a serie~ of ·•pay
forms" which can be cut out and inserted in the employee's pay
envelope along with his check.

RL'N

PRO GRAM TO COMPUTF PAYROLL

AFTER ALL &.PLOYEES' LATA HAVE BEEN TY PEl IN,
TYPE A ZERO fO n iliE EMPLOYEE ~IJ!PER, Tl< ~
THF PAYROLL ~ILL BF PRINTED ovr.

EMPLOYfE NU,Pf.R •11 2 3
HO URS liOPKED •7 39
PAY RATE •73• 7~
SAVIN GS PL AN •715

EMPLOYEE NUMPER •799
HOURS liORKED •7 SI
PAY RATE •? S, ~5
SAVINGS PLAN •7 20

EMPLOYEE NUMPER •7 0

• • •:c••z••••••• ••• .. •=:zzz■••a••••••••• ••••••••••••••••••
,=■■ ■ ■ ■■•■ II■ •=:: lt C :CZ ■a••··•• • ····••• • &:z: ••··•••·•••·• ••■

EMPLOYEE NU,PER • 123

tEt'UCTI ONS• • •
SAVINGS PLA.~ 1 I 5
TAX ~I THHfl. D1 2 2• 113

VORN AL PAY • 147• 42
O~ERTIME • 0
TO TAL C-RO SS PAY • U1• 42

TO TAL fEDUCTIONS • 37• 1l 3

NFT PAY 110. 31

== :::1 =i ;r • = i::■ = = c: == = = z:a a ■ •• ••••••• ■ ■ca • • • •••• •• &:■••••• • • ••

• • ■ • c • = i: .. a= • a cs•:•••■•••••• ••••• •••••••• • • • a•••• •• • • ■ ••

FMPLOYEE NUMPER • 99

OEt'UCTIONS• • •
SAVINGS PLAN I 20
TAX WITHHEl. CI 6 1 • s• s

NORMAL PAY • 21 1
O~ERTIME • e9, 925
TO TAL GRO SS PAY • 307, 925

TOTAL [[DUCT IONS • Pl • 51'5

NFT PAY , 226• J •

=•• • ••• •:CCC a ■ : ■aaa: a•:•••·••••• •• ■ •••• a• • ■■••••••• • • • ••

145

..

146

10
20
JO
40
50
60
70
80
90
100
110
120
130
140
150
160
170
i~o
190
200
2 10

Here is a LISTing of the /PAYROLL/ program:

PRINT "PROGRAM 10 COMPUTE PAYROLL"

PRINT
PRINT "AFTER ALL EMPLOYEES• DATA HAVE BEEN TI'PE& I N, "
PRINT " TYPE A ZERO FOR THE EMPLOYH NU'IBER• THEN "
PRINT " THE PAYROLL •ILL BE PRrnTED OUT• "

PRINT
LET N• I
PRINT "EMPLOYEE NU'IBER •"l
INPUT E[Nl

IF lCNl •O THEN 200
PRINT "HO URS WORKED ■ ";
INPU1 HCN l
PRI NT " PAY RATE =" l
rnPUT R[Nl
PRINT "SAVINGS PLAN •"l
IN PUT SCNl
LET N•N+ I
PRIN T
GO TO 80
LET N• N• I
FOR 1• 1 10 N

INT
230 PRINT ••• •••••••••• •• •• ••••••••••••• ••••••••••• • ••••••• •••=•••• "
2 40 PRI NT s■••············· ·····•• c••:1:•= •• "

PR:

250
260
2 7(\
280
290
300
310
320
330
340
350
360
370
380
·390
400
410
420

PRI NT -
PRI N1 "EMPLOYEE N1'!BER • " l EC I l Checks to see tf employee worked
~~\~;;0 .. ,.

0
THEN

320
- -----~ " normal" or " overtime" hours.

LET Ol •<HC J l • 40>• RC l l • l • 5 4----
LET c• 40•RCJ 1 Uses the " overtime" formula to
~f i~~ ll • RC

11
.__._______ _____ calculate " time-and-a-half" pay.

PRI NT TAB<29ll ''N0Ri'I AL PAY • "lG
....... u..i-r TAQ(o:)Q'I: "'OVERTIM E
LET T•G+Ot +------------­
PRINT TAl'<29ll " lOTAL GROSS PAY
PRI NT " DEDUCTIONS• •• "

•"1 T

PRINT ,. SAVINGS Pl. AN t 0
; SC J l

IF T> 50 THEN 4 20
LET F• O
GOTO 520
IF 1>75 THEN 450

.--+I 430 LET F•T•• OS
""O GOTO 520
450 I F T> I 00 THEN 480
460 LET F=T•• I
470 GOTO 520
4~0 I F T>l50 THEN 510
490 LET F•T••l 5
500 GOTO 520

LET F•T• •2 510
'52(1 PRINT " TAX WITHHO.. Di"if

LET 0-S[I J ♦ F
PRINT TABC29) i " TOTAL DEDUC TIO~ S • "i D

Lines 300 and 320 use the " normal"
formula to calculate normal pay.

4 Calculates " gross" pay. /

PRINT
PRINT TAI'(29ll "NET PAY

•"l JNT« T·DlO I 00• • 511100

PR INT

530
540
550
560
570
580
590
600
6 10

NEXT I
PRINT PR INT .. •••••••c=••-=••••••••••••••••••••••••••••••••••••• • • • • •• "

END

Lines 390 to 510 are used to find out in which " tax bracket"
the gross pay falls and then to calculate the amount of tax

to be w ithheld.

,. ,.

'

. ..___

Suggested Explorations:

1 _ Write a program that keeps track of your checking ac
dd . d .1 b count

It shou l_d a in epos1 s. su tract the amounts of check~
you wnte. subtract the monthly and/or individual ch k
charge the bank makes, and print the balance for any dat:.c

2_ Write a program that pri~ts out monthly bills for a credit-card
company. It should add in payments made in the past month
subtract the cost of purchases made, and subtract a 1.S%
monthly f inance charge on the unpaid balance. (NOTE: A
monthly 1.5% finance charge=18% yearly charge.)

3. It is often desirable to put records in order, either alphabet­
ically or numerically. Below is a subroutine that can be added
to the / PAYROLL/ program that will sort the pay records by
employee number. You' ll have to add a new line

205 GOSUB 1000

to PAYROLL, and change

610 END to 610 STOP.

100 0
1010
1020
1030

..--. 1040
1050
1060

I--+ 1070
1080
1090

~ 11 00
1110
11 20

I--+ 1130
11 40
1150
11 60
1170
11 80
1190
1200

I 1 121 0

E is a temporary variable
used in swapping.
(Recal l the //SORT/ /
program in Section 3-2.)

LET N l•N- I
LET s■ O
FOR l•I TO NI
I F ECl l •ECl• ll 1111N 1170
LET E• Etll
LET ECll•EC l+ll
LET ECl +ll•E
L ET E•HC l l
L E1 Htll•HCl• l l 7
LET HCJ+ll• E
LET E•RCll
LET Rtl l•RC I ♦ ll] ·
LET RU• l l•E
LET E•SC ll
LET SCll•SC l+l l J
LET SCl • l l•E
LET S• I
NEXT I
LET Nl•Nl •I
If S <> 0 THEN 1010
RETURN
EN D

!The list E(I) is sorted I
I in· increasing order. and

I the lists H(I), A(I), and
S(I) are rearranged to /

~ atch.

4
· Can you change your program so that it sorts the pay reco

rd
s

in order of increasing net pay?
147 ~

148

4-5 Batch-Mode Computing

Computi?g done at a ter~_i.nal con?ec~~d ~o a comput~r that "speaks·•
BASIC ts often called interactive, since there 1s give-and-tak
between the machine and the programmer. c

For many applications, however, interactive computing is
needed. For example, the job of preparing payroll checks does not

. h h be. b . t t · not require t at a uman mg e m cons an communication with th
computer. watching each piece of information it prints. It suffic c
that the instructions for preparing these check~ be programmed ju: ~
once, and that the computer then be left by itself to grind out the
checks, with the human operator picking them up later in the day
The diagram below illustrates a typical batch system. ·

I r.,--, ~ ... , c r11•N"" ! ----
' ~1,t1NI':.•
I V

\ IN ~ - - --,,,/ ti' . ,,<~,-t ,~_; -~ ,
I
t
\
....

'

f - ' .. \;V \
,_.,, ,, / • I

I I I
I I /

', ,, " I
- I

STA RT ~---- -------------
After designing his program at his desk, the user "writes" his

program on cards. This is done either by making special pencil marks
on the card or by punching holes in the card. He then takes his
"deck" of cards to the computer room and places it on a stack (batch)
of decks from other users. The card reader interprets the statements
on the cards by decoding the marks on them. The computer then
executes the programs that were on the cards, and prints the output.
The programmer may have to wait a few hours since batch systems
are often used for very long-running programs. If there are mistakes.
or if revisions must be made, the whole process must be repeated.
Just one warning: if you are using a batch computer, you can't use
INPUT statements (why?). Use READ-DATA ins~ad.

Selected Answers and Hints
for Exercises

2 2 page 23 Exercise 3: Three lines. with six asrensks on <ilCh J,nc, S-'1Ion ,-
0
: (4+(9•2)/'(3+ 1)=88

E,1<n:1« .I ·
2
_3, page 34

5,ctfon
1
. ,he variables C23. XY. 20. 5F. Wl3, IOU

E,1crc11• · F-Z. 3. :ind X3. l are _not allowed in BASIC. ·

2
. n,e program outpul 1s:

/BLOCKS/ - Use 3 nested 10 FOR la J 10 J
FOR loops: The outer loop 20 F0 R J• J TO 4
will control lhe num~r of 30 F() R I<• J 10 7

i,1rc1se . 12 8 20 4 96
248

2-4 page 45
s,cuo; 9. 'cal J J 4159000000
£••"'' . (b/ .0000000000314159
£,crcisc JO: (a) 7.00000E+09

(bJ 7.00000E- 09

s,clJon 2-5, page 49

rectangles (3), the middle llO PRINT "*"J loop will control lhe num.
ber of rows per rectangle SO NEXT K
(4/, and the inner loop will 60 PRINT
control the number of 70 NEXT J
asterisks per row (7). 80 PRINT

90 NEXT I
JOO DID

E,cn:isc 2: For R2 2, the RUN looks like this:

~ ,.~ Page 7S
///SPEED CAR///

1'(PE IN RADIUS
12
AREA • I l! • 566.11

Elcrcise J: For example. in line 60, the righl quotation
mark is missing: in ltne 80, the quotation marks
should nol be used.

Stction 2-6, page 57
facn:ise 2, #8: TRUE, 16•48 is less than 24•48; branch 10

line 80.

Stction 2-7, page 70
Elcn:,se I: For example, lhe variable MS lakes on lhe

values in lhe sel (J,9, 15,21.27}.
Elcn:ise 2: For example, lhe variable X is made lo take on

lhc given sci of values by the statement:
FOR X= 1 TO 1.7 STEP .1

Elcrcise 4: Ten numbe!li will be printed in all.
Ptgt1 73-74
E.mcise 2: The pallem will be: •

•

•

•

•

STARTI NG SPEED
C Ml LES/HOUR>

• 5
<AFTER

FI NAL SPEtO
10TH TR IP AROLWOI

22,6296 I
I , 5
2
2 ,5
3
J . 5
4
4, 5
5
5, 5
6

SecUon 3- 2, pages 88-90

45 , 2593
67,8889
90, 5185
J 13, 148
135,778
158, 407
18 1, 037
203, 667
226, 296
248 , 926
271, 556

Exercise I : For example, Z(l6). Z(l60/I OJ. Z{2l6/16)
Exercise 2: 18

16
10
130

Exercise 3: ?12
?13
?14
?15
?16

YOUR NUMBERS

12
13
14
15
16

SO. OF YOUR NO.

144
169
196
225
256

----=--

Section 3-2 (continued)

Modification of /TRAC K I/:
Add the following steps:

291 PRINT

292 PRINT "INPUT ATHLETE" Nl.MBERS FOR 3 BEST SPEEDSl"
293 INPUT A,E,C

294 LET S1=<300/5280)/(TCAJ/3600>
295 LET S2= < 30015280)/<TC BJ/ 3600 >
296 LET S3,.<300l52PO>l<TCCJ/3600>
297 PRINT "AVERAGE SPEED OF TOP 3 WAS"J
298 PRINT <Sl+S2+S3>13J" MPH•"

Section 3-4, page 100
A program for //BRAKE//

10
20
30
40
5C
60
70
80
90
100
110
120
130
lllO
150
160
170
180

PRINT "DI STANCE NEEDED TO STOP A CAR AT VARIOUS SPEEDS"
PRINT
PRINT "SF FED t'l STANCE < EACH + REPRESENTS ONE CAR LENGTH>"
LET DaO
PRINT TAB<4>J
FOR N•l TO 66
PRINT "+"J
NEXT N
PRINT

PRINT
IF D>O THEN 180
FOR I=lO TO 80 STEP 5
LET 0-UI••Ol
PRINT IJTAB<D+3>J"*"
NEXT I
P RINT
GOTO 50
EN D

Section 3-5, page 105
Exercise 4: Output is: 2

1

Section 3-6, pages 111- 112
Modification of /PIZZA/:
Find the cost per bite by dividing the cost (for example,
S 1.00 for a IO" pizza) by the number of square-inch bites
(78.5397 for a 10" pizza). The best buy will be the pizza
with the lowest cost per bite (this is the same idea as unit
pricing in supermarkets).

HI NT for //IN VERSE PIZZA//:
If P = no. of people, B = no. of bites each. and N = no.

of pizzas:
LET D = 2 • SOR(P • B/ (3.14159• N))

Pages 118-119
Exerd,e 5: Change line 20 in /RAND/ to:

20 PRINT INT(101• RND(1)- 50)

150

..

Hint for /DICE/:
Use a variable for the toss of each die.
For example:

LET A = INT(6• RND(1)+1)
LET B = INT(6•RND(1)+1)
PRINT A, B. A+B

Hint for 1/G UESSJ/:
To find which player was closer to the computer's choice .
you might do the following:

Use PI as player one's number. P2 as player two's num·
bcr, C as the computer's choice, and then use a conditional
statement of the form:

IF ABS(C- P1)< ABS(C- P2) THEN . ..
(We use ABS 10 gel the numerical "distance" from C 10

Pl and P2.)
If the condition is true, P I wins. If the condition is no1

true and the players gave different numbers, then P2 wins.
Whal do you want the computer to do if the second player

uses the same number as the first player?

s-c;don 3_5 (continued)

122-123 p,g•• /MELODY/:
Jllents on Cofl1 RE, Ml. f A, SOL, LA! Tl stand for different notes

oO,
1

. DO is the first, RE 1s the next (one tone higher)
of a SC~~: Listen t~ the song " DO RE Ml" from Th~ Sound
and 50 .

10
get an idea of what these notes sound like

of t,tus1r ·
.

15
for //SONG//: End each song_ with DO.

11,n for a simple program. you might select several bars
(IJ · /MELODY/: as 1n DO Ml SOL, LA FA RE. and so on

You can then have the computer randomly select 4
f these 10 make each line except the last. Make

~pecial provisions 1_0 end-with DO.
(Z) for a more complicated program, you can have the

computer make up each b~r by making 3 or 4 random
selections from the 7 possible notes .

(J) You can extend the possibilities by using DO I as
the upper octave of DO.

(4) t1ere's an example with four bars per line.

5 RANOOMIZE <SEE PA GE 116, l
10 FO R L"l TO 4
20 FOR B=l TO 3
30 GOTO INT<3•RN D<l>+l> OF 40, 60, 80
40 PRINT "t LA TI .. ;
50 GOTO 90
60 PRINT "1 SOL MI "J
70 GOTO 90
8 0 PR I NT "1 FA RE " ;
9 0 NEX T 8
100 IF L<4 THEN 120
11 0 GOTO I 70
120 GOTO INT< 2• RN D< l >+l> OF 130,t SO
130 PPINT "1 SOL - :"
140 GOTO 160
150 PRINT " 1 Ml - I "
160 NEXT L
1 70 PRINT ": 00 -
180 END
RU'J

FA RE
FA RF
LA TI
SOL MI

LA TI
SOL MI
SOL Ml
LA TI

I "

I LA TI
SOL MI
FA RE

: SOL MI

I MI •
I SOL •
I SOL •
I IX) •

151

1111111

Section 4-3, page 140
Quizzes make interesting ga me programs. especially when
the RND func tion i, u,ed .

Herc are two example, that may give you some ideas.

,;, RANLOM I Z E < S H PACE I I 6 • >
10 L E.T \il• Q
?O LFT P•O

:\0 P RPH "Olll l ON SPE[D • DI S TAN CE/ TI ME"
l.10 F-R INT
~r,
, o
10
•o
9 0
100
11 0
!PO
11n
I oo
1'0
160
I '/0
160
190
2 0 0
210
220
2 30
2 ,,0
AL.,

►Ofi J -.1 TO 5

LET ~ ! NT< < 3• Rt'-Jr< I>• I h 100>
L ET T"' (l 'J T<~• P .. \ILCl> •~>>l10
P RI N T "Al liFLA.~f ";IJ " COf.S"J DJ " MJLi S J N" iT; " HOUHS• "
FRI NT "\iH AT IS 1 1 !) Sf' f_}:[' ~ MPH"J

I NPUT S I
LET S• U T
I F AB S CJNl<S I -S » <• ~ TH E.N HO
PR I N T "NOa S P F FD • D/T • "i OJ " I"; Ti "•"; Si " MPH"
LET IJa W+ I
l.010 I R0

PfdN T " \/F RY r-nor I lHF f Xll CT AN ~ t.. H1 J S"; s;" MPH • "
LE.1 R=k + I
PRIN T
~ FYT T
PRI NT
PRI N T "'SCUR EJ " ;,;;" R I CHT.1 " ; 1-; " ltPO'H "
L E T P • fl l~• I OO
PR I N T "P£fir ~ t A(;f fl'IU-1T: " ; p; " 1 ••
F'O D

P.UI Z ON SPEfr • t'l S TA.~CE/ T I ME

AI R F L A.'Jf I co t s 1 Cl7 MIL E5 I N · R HOLlh S •
'-'HAl I !> 1 1 S S FLl D I N MP H1 1 3ll
V£PY GOO D! TH l .E."XAC1 A.~S \t.F R IS 1~3 • 7~ MPH •

AI RPLANE? GOE S 3 11 f'III L F5 J ~ -fl' 1-IOUPS •
"-'HAT J S I T S SPEEr I~ MPf-17 ~:?Cl
VEl' Y r-00 0 1 THf r xP CT .CNS\, ER IS S I A• 33 3 MPH·

AJRFLA~f :1 GOF~ l:" 7 !"! I LES l 'J •6 HOUhS •
'a.HAT I S ITS !-PJ-.F[I N MP!-'7212
l.ifRY r.oor,1 lHE EXA CT P~S 1,,£ fj IS 21 J • 6{, 7 MPH' •

Al PFLA'H iJ ro r s 399 MI L fS l'\i . q HOLIP S•
\.. HA1 1 S I TS SPEH . I N Mf'H ? .t1LIO
.-.tOt S Pff[c t,/ 1 • 399/ . 9 = t;Lj J . 33, M ... H

f\ I EPL/\Nl S GO FS ? S I MILE£ I·~ • S HOUR~ •
~'HA T I S I TS S PEH I N iv.PH? SD~
1,,,EJ;Y l,()0 [! THE EXP CT .a.-.J S \t.FP I S 502 MPf-l •

SC-OH Es 4 k l t,H1> I \rRON C,
PffiC f"'\I Tf1Ci F nJ o n : 801

152

~
c S EE PAGE I 16 • >

0 pRl~T
uT)fl S I S AN ' I O '•TYPE QUI Z •"

~ pRfHT •T)ff S pfl()GA"" WI LL PRIN T v • P IOl•S s r oumcEs OF
,0 pRINT " FACH fl/ DING ~I TH A PL ANH C····· > • •Hr:. YO L• Nll<f FP.S"
II:- PRf~f " pf IN TH £ Nl"1 BFR Tl-fPiT YO U THINK TH E CO:,tp SEF A ' ? '>"
so pR IN T .,;VE PRI NT FD I N Pl. ACF Of Tl! F PLANK , " • UTER MIGHT"

60 pR fNT
ppfNT

70 1..fT R• O
eo 1..Ef ~-o
90 f'() R J• I fO 5
100 Jl'lr ••pROBLEM ' '; I
11 0 H~1 A• ll'f T< l O• RN C: < lJ+ll
J20 1.,ET s-,JN T<I O• RNO<J J+ J>
130 L~T G,■ INT<.'.l•R" C< l l+I >
J40 I.. f 11,.e THFN 29 0
150 ~TOG Of 110, 2 10 >?50
160 Ef X• 2• A• 3• B
170 ~A JNT 11:">";8J", "; 1li♦ FlJ ","JA+ 2• B; ",

::~ INPUT Y

1

2(\CI ~f ;t:!~A•P• P• P•
?10 L, INT AJ " > "; p ; " > u ; A• !H " , " ; £1• .a• e ; " >
ppO PR

2:,t, J,VPUT Y
2.0 GOTO •10
co 1..E.T x•-B ~60 PRINT M "> " J e J " > " ; e-AJ .. ., "J -A; " >

p7() INPUT Y
,~o GOTO • 10
?90 c:o TO e of' 300> .qoo., :urn
,00 Lf T X•A • 5
310 f,JUN T AJ "> " i 2• tH " > "J 3 •AJ .. ., "; ~•AJ "•

1PO INPl 1T Y
JJO GO TO •1 0
,,o L.FT X• J 6• A
3!,0 PRIN T IIJ ", "J 2 • AJ " > " ; 4• AJ " ., "'; B• A; " •
J60 l~PUT Y
J10 GOTO 410
3H(l Lil X•A I 5
JQO PRI"'T AJ " > "i li• AJ 11

> "; A l 3 J " > "J Ar lH ",

000 l~P(IT Y
1110 1 F 1•Y THEN 450

~~ ~~~N:..:~J THE COKPUU R ' S SEOl!ENCf ~ AS " ; x; " • "

A.co 0010 .<170
4~ PRINT "THAT'!-- RI ~TI "
460 LET R•Ji+ l
00 PRl~T
lilfO NEXT J
.g(I PfHNT

~ ~~NT "SCOP.EI " ; RJ " RI C•HT> u; \t. J " lr.HO~ l -"

..,,

THI S I !: AN •t Q' - TYP£ QUI Z •

llll S PROGRAM WILL PA l~ •RIOUS SlOUF.NCES OF Sl.OlfEAS
EJICH ENDING WITH A Bl..,:WK (---- -) . \..Hb~ YOU s rr P ' 1 ' >

TYPE 1'-' THE tJ lr. BER THAT YOL• TH I NK lHI: COMFUTf k Ml ll-lT
MAH PRINT[[: I N PL~cr OF TH E PL A~K·

Ff(IEt.°' I
fh 16, 24, 32, ,.o

TliAl ' S RlCHTI

b48,

scor,1:
1J fi l GH7.,

I 'iJRONG

153

11111

Index

ABS. 114
Absolute value, 114
Acoustic coupler, 7
Argument

See Functions
Arithmetic operators, 21

order of. 23
Array. 85

two-dimensional. 93

Balance, unpaid, 143
Batch-mode computing. 148
Body of loop

See FOR-NEXT
BREAK key. 47
Business applications. 141- 147

Comma, use of, 24
review, 28

C ommands, function of. 19
Compiler, 10
Conditional statements

See IF-THEN
Constants. 32- 33
CTRL key. 9, 47

DATA statements
See READ-DATA

Data analysis. 127- 132
Decisions

See IF ... THEN
Deleting lines. 14
Destructive read-in. 31
DIM. 87

double-subscript. 96
Double-subscript variables

See Variables

END, 19-28
review. 28

Ernsing characters
on line. 13
on tape. 8 1

Erasing lines. 14
See also SC Ratch

Errors. correcting. 13. 16
ESCape key. 13
Execution of program

See RUN
Exponentiation. 21-22

scientific notation. 43

Fibonacci numbers. 90
F low charting. 47- 48
FOR-NEXT. 63-77

body of loop. 66
nested loops. 72
review. 77
STEP. 68
variables in. 71

154

Functions. 109-119
ABS. 114
argument. I 09
INT, 112
RND. 114
SQR. 109
value. 109

Games and simulations. 136-140
GOSUB-RETURN. 123-125
GOTO. 46-52

review. 52
GOTO ... OF 120-123

or ON . . . G OTO 121

IF ... THEN. 52-62
compared to FOR-NEXT. 63
for looping. 59
review. 62

I ncrcment. 60. 64
Infinite loop, 46
INPUT. 37-45

mullivariable, 42
review. 45

INT. 112
I ntcgcr part of, 11 2
Interest rate. 141

Keyboard, diagram, 8
Keywords. 18, 126

LET. 29-37
review. 37

Library functions
See Functions

Line feed, 27
Line number~ . . 20
UST. 13

review. 28
Logging in

minicomputer. 6
time sharing. 7-8

Logging out. 12

Memory locations. 29. 86. 94
Minicomputer. 3

logging in. 6
Multiplexor, 4

Nested FOR loops
See FOR-NEXT

Nonnumcric applications. 132- 135

Off-line, 2
ON . .. GOTO .

See GOTO . . . OF .
On-line. 1- 2
Operators. arithmetic

St>e Arithmetic operators
Order of operations. 23
Output. 19

Paper tape, 78-82
feeding programs on-line. 80
paper tape punch. 78
paper tape reader. 78
preparing programs off-line. 80
saving programs on-line, 79

Parentheses. use of. 22-23
Percent. 32
PRINT. 19-28

comma with, 24
quotation marks in. 20
review, 28
semicolon with, 25
zones, 24

PRINT TAB
See TAB

Programs
/ACCIDENT/. 96
/ADD-ON/, 142
/AIR RESERV/. 130
/AIRLINE!/. 9 1
/AIRL1NE2/. 9 1
/ARITH/. 26
/ARITH2/. 27
/BLOC KS/. 74
//BRAKE//. 100
/BURIED TREASURE/. 138
/COIN/. 11 7
/DICE/. 119
/ELEVATOR/. 114
/FACT QUIZ/. 125
//GRADE//. 75
//GUESS//, 119
/HOTEL RESERV/. 128
//INVERSE PIZZA//, 112
/MATHQUIZ/. 58
/MELODY/, 122
/MENU/, 133
/MONEY/. 42
//MUl:TABLE//. 27
/PAYROLL/. 144
/PIZZA/, 111
//QUIZ//, 6 1
/RAN D/, 11 8
/RAT!/, 35
/RAT2/, 39
/RAT3/, 49
//RATSTUDY/1, 36
/RETIRE/. 41
/SEQ/, 60
/SLEEP/, 41
/SLOT MACHINE/, 136
/SOAP/. 132
//SONG//, 123
//SORT//, 92
///SPEED CAR///, 76
/STA RS/. 74
/SUM PROD/. 42
//SUPER QU IZ//. 125
//SU PER-SLEEP//. 45
///SU RVEY///. 107

ffRACKI /, 90
,rRf.E/, 99
,rRJ ANGLE/, 74
/UN PAID-BAL INT/. 143

/JWAU//, 50
(Wf.ATHERI /. 106
(Wf.ATHER2/, 106

Quoiation marks in PRINT state-

ments, 20

Random numbers, I I 4
RAN DOMIZE. I 16
REA D-DATA. t00--108

summary. I 04
REA DY. 19
REMark, 89
RESTORE, I 04
RETURN key, 8
R6TU RN statement

Stt GOSUB-RETURN

~
........_

Rounding, 113
RND, 114
RUBOUT key, 80-81
RUN, 14

review, 28

Saving programs
See Paper tape

Scientific notation, 43
review, 45

SCRatch, 26
review, 28

Semicolon, use of, 25
review. 28

Simulation, by hand, 22
of coin tossing, I 17
of games, 136-140

SQR, 109
Square root, I 09
STEP, 68

STOP, 56
Subroutine, 123
Subscripted variables

See Variables

TAB, 97-100
Tape, paper

See Paper tape
Terminal. 3

See also Keyboard
Time sharing, 4

logging in. 7-8
Truncation, I 13
Two-dimensional arrays. 93

Value
See Functions

Variables, 30-34, 37
double-subscript, 94-96
single-subscript, 85-92

155 •

Name and l)llge

PRINT (page 19)

LET (page 29)

INPUT (page 37)

GOTO (page 46)
IF THEN (page 52)

FOR (STEP) (pages 63, 68)

NEXT (page 63)

DIM (pages 87, 96)
REM (page 89)
TAB (page 97)

READ (page 100)

DAT A (page 100)
RESTORE (page 104)

GOTO OF (page 120)
(ON GOTO.Page 121)
GOSUB (page 123)

RETURN loage 123)

RANDOMIZE (page 116)

STOP (page 56)

END (page 19)

UST (page 13)
RUN(page 14)
SCR(page 26)

Summary of BASIC

STATEMENTS (require line numbers)

Purpose

Types out messages---------­
or values of numerical expressions ---­
or both ---- ---------­

Calculates an expression and assigns the value to
a given location.
Requests data for certain variables from the ter­
minal (during a RUN) . - -------­
Sends the program execution to another line. -
Sends the program execution to the given line if
the condition is true. - - -------­
Sets up and runs the body of a loop a stated num­
ber of times.--- ----------

Closes the loop. - ----------

Declares maximum sizes of arrays. - ---~
Permits comments.---- -----­
Permits computed placement of output. ---

Assigns values from DATA statements to given
variables.-------------­
Holds the data (values) for READ statements. -
Allows data to be used again. -------

Sends the program execution to one of several
lines depending on the value of the variable.
Sends the program ex.ecution to a subroutine. -

Sends the prog ram ex.ecution back 10 the l ine after
GOSUB. -------------

" Randomizes" the random number generator (only
on some computers) . ---------➔

Halts RUN of program (may be anywhere within the
program).-------------­
Last line of program.

Example

170 PRINT " HELLO THERE"
200 PRINT X, 3•X+5, 4 f 6
220 PRINT " ANSWERS•" : X+9: 4 16; y
50 LET Y=7
60 LET X= 2•B+X

380 INPUT A,B
60 GOTO 205

90 IF W8 < =4 THEN 260

40 FOR 1=1 TO 9 STEP 2
\ Body of the loop I
80 NEXT I

150 DIM M(20),N(15,20)
105 REM CALCULATES AREA
160 PRINT TAB(X) : " • "

150 READ A(J) ,B(J),C
200 DATA 2,3,6
238 RESTORE

310 GOTO Y OF 35,90,125
(310 ON Y GOTO 35,90.125)
40 GOSUB 300 50------ 3 60 ------

300 - ----

~~~ RETU-RN I 

5 RANDOMIZE 

65 STOP 
999 END .--

COMMANDS (need no line numbers) 

Prints out the current prog ram . 
Begins execution of the program. 
Erases the current program. 

MISCELLANEOUS 

Other commands vary from computer to 
computer. Check your reference manual 

Variables . X.Y3,C(Y),N(X,Y),F(B(X) ,J) Operators: +.-. • ./. f (page 21) 
Relations: </= ,= ,>, > c ,...:;..> (pages 54. 56) 

(pages 30. 34 . 85, 941 
Functtons: SOR, INT. ABS, AND (pages 109-119) [Also available: SIN , cos, TAN, ATN, LOG. EXP. SGNJ 

156 

• 




	2741
	2651
	2651 (2)
	2651 (3)
	2651 (4)



