rare.

A Curriculum Guide For Teaching BASIC is part of
the BASIC Programming Curriculum Package ($50).
This book is also available separately for $4.00
plus .50 postage and handling from:

Software Distribution Center
Digital Equipment Corporation
Maynard, Massachusetts 01754

For information regarding other DIGITAL curriculum
publications, obtain a copy of the Curriculum Mat-
erial Product Catalog from:

Communication Services
Digital Equipment Corporation
Maynard, Massachusetts 01754

lst Printing -- March 1974

Copyright (:) 1974 by:
Digital Equipment Corporation
Maynard, Massachusetts 01754

DEC-08-ECGBA-A-D

acknowledgements

special thanks to pamela H. Ellsworth of
project LOCAL, Inc., for her help and experience
which made much of this guide possible.

contents

Page
INTRODUCTION 1
BEFORE YOU BEGIN 3
The Computer Facility 3
Introducing the Computer 8
Computer Familiarization 10
Classroom Ideas 12
Points to Remember 17
THREE METHODS FOR TEACHING BASIC 19
self-Teaching Method 19
Short Course Method 21
Integrated Course Method 22
INDEX OF BASIC TOPICS 25
Part I: Discussion Index 26
Part II: Assignment Index 29
Part III: Project Index 31

APPENDIX 33

h‘;

introduction

This guide is designed to provide.assistance in esFablishing a
cessful course of instruction in BASIC programming. The

and ideas discussed do not exhaust all possible
may be implemented. They are, however, based on
lemented techniques derived from actual classroom

suc C
recommendations

approaches that
successfully imp
experiences.

examines facility planning, instructional prerequisites,
jdeas for classroom implementation, and thrge methods of teaching
BASIC programming. In addition, a topical index has been included
for easy reference to additional discussions, assignments, and
projects contained in major BASIC texts. The Appendix lists addi-
tional materials which may be cbtained directly from the publishers.

The guide

It is highly recommended that for most successful results, this
guide be used in conjunction with the other elements of the BASIC
Programming Curriculum Package. The contents of this package

include:

populution: A Self-Teaching BASIC Primer; DIGITAL

EduSystem Handbook; DIGITAL

101 BASIC Computer Games edited by D.H. Ahl; DIGITAL

Getting Started in Classroom Computing by
D.H. Ahl; DIGITAL

23 Slides For Teaching BASIC (with teacher's
guide); DIGITAL

A Short Course _in BASIC by P.H. Ellsworth,
Project LOCAL, Inc; DIGITAL

A Curriculum Guide for Teaching BASIC by
S.R. Bower; DIGITAL

Bibliography of Texts and Resources on the
Uses of Computers in Education; DIGITAL

For additional information regarding this package and other re-
sources consult the DIGITAL Curriculum Material Product Catalog.

the

before you begin

A successful program of BASIC language instruction requires
careful planning. Before beginning the task of establishing
a programming curriculum, several things should be considered:

The capabilities and limitations of the school com-

1.
puter facility must be understood.

2. Students and faculty must be introduced to and be
confident about using the computer.

3. The background knowledge of computer fundamentals
must be stressed.

4. Classroom procedures and methods should be estab-
lished.

Each of these considerations are discussed in this guide and
recommendations are made based on successful implementations in

classroom environments.

computer facility

The size and the location of the school computer facility
must be determined and an installation plan established before a
successful program of instruction may be implemented. The physical
size of the computer often determines its location. For example,

a small facility consisting of terminals and a small minicomputer
may be located in the classroom (classroom laboratory), whereas
larger computer systems are often situated in a laboratory or a room
designed specifically for housing the equipment (computer labor-
atory). In some schools a combined approach is used. The class-
room laboratory and the computer laboratory each create unique
requirements and problems that must be understood before instruc-
tion begins.

The classroom laboratory creates a comfortable learning
environment because the computer or terminal becomes a Permanent
and familiar classroom instructional tool. Its easy availabiljt
permits the computer to be referenced to illustrate conceptg g
currently being studied. Should questions arise related to dis~
cussion of a programming topic, demonstration of examples canp tak
place immediately. Easy access to the computer resource ig par- ¢
ticularly important where computer fundamentals and Programming
languages are being taught for the first time; unanticipateq
questions can be answered immediately using the computer rather
than postponed for the next session.

The classroom laboratory arrangement facilitates the Super-
vision of student activities. At the same time, it creates an
active classroom environment and one that encourages student-
student interaction and involvement. Generally, a class period wil)
begin with discussion of a new topic in BASIC programming and ter-
minate with student experimentation at the terminals.

This combination of classroom instruction and computer time,
though mutually reinforcing experiences, may create some problems.
Because the terminals are located in the classroom, students may
not be able to use the facility outside of class, particularly
where there are scheduling conflicts. In addition, the classroom
laboratory approach may restrict the use of the resource by other
members of the faculty. School-wide usage of the computer facility
is a highly desirable goal for many schools; such physical restric-
tion will almost certainly inhibit the growth of the school computer
program and interfere with the goal of school-wide usage.

Restricted use of the computer resource has been eliminated
in many schools by creating "mobile" terminals. By installing a
few simple computer equipment options, and placing terminals on
carts, the terminalscan be transported to different class-
rooms where they are needed. Thus, the computer becomes a class-
room tool, not unlike visual aid equipment. Scheduling of the
resource to maximize usage is, of course, an important aspect

which cannot be overlooked.

movable

portable terminals allow wi@er usage by the faculty and
ermit greater studgnt u§age during free class sessions. However,
where the terminal is being ?s?d by students outside of the normal
faculty supervision must be considered,

class Period'

whether the classroom laboraFory is permanent or portable,
one additional considerat?on remains. Depegding on the model of
the terminal used, the noise factor may be important in estab-
lishing a schedule for computer use. A reasonably quiet terminal,
such as a CRT (cathode Ray Tube) terminal or DECwriter, may not
interfere with concurrent classroom work, thus allowing students to
work with the computer during-class. However, if the terminal is of
the "noisy" variety, restrictions must likely be placed on concurrent

activity.

The computer laboratory should be situated in a central loca-
tion for easy access by all departments within a school. It may

be adjacent to the school library or in some cases, in a room
specifically designed to house the facility. In either case,
central location is critically important if a school-wide computer

program is a desired goal.

The major advantage of the computer laboratory arrangement
is that students may work independently of classroom instruction:
advanced students are free to work in the laboratory during a
portion or all of a given class period. As the class becomes
competent in programming skills, the entire class may be scheduled
for computer time during a class period. The separation of class-
room instruction and computer time is desirable because it allows
the teacher to conduct review sessions or to help students individ-
ually while other students work concurrently with the computer in

the separate location.

Two schedules must be established for effective use of the
computer laboratory facility; one for faculty supervision and
another for student terminal time. If a data processing manager
has been appointed, supervision of the facility by other faculty

members is probably unnecessary.

Perhaps more important than supervision is the availabi]j+
of a faculty resource person to answer student questionsg while t{
computer is in use. Close observation and discipline, intereath e
is often unnecessary in the computer laboratory. Students oftenngIYa
take serious responsibility for the resource and work actively tq
protect it from misuse by their peers. Computer laboratories in
many schools have proven to be the most active and healthy of
learning environments; student conversations and interaction are
for the most part, based on exchange and cooperation-- a healthy'
and desirable atmosphere for learning! Consequently, the computer
laboratory should be open for students' participation, whether the:
are, themselves, using the terminal or not! Some restriction, of -
course, must be placed on students to avoid massive crowds--z common
problem faced in the computer laboratory!

The frequency of student-terminal contact is based on the
duration of the programming course, the size of the computer facil-
ity, the number of students participating in the program and the
complexity of the assignments that require computer use. Many
schools have instituted a rigid schedule for computer use out of
sheer necessity; where the physical size of the computer resource
is small, this is often mandatory. The use of off-line terminals
to prepare program paper tapes prior to on-line testing has been
successfully implemented in schools that do not have a large com-
puter facility.

If ample computer resource is available, however, a rigid
schedule for student use should be avoided. Many schools have
found that alloting terminal time on a "first-come, first-served"
basis has proven effective. This policy, combined with a priority
"schedule" given to specific assignments and a maximum per diem
limit of computer use placed on each student, has produced satis-
factory results. Plenty of time should remain for work on extra-
curricular projects and experimentation with games, drills and
simulations. The positive educational value of these latter ex-
periences should not be overlooked!

Sign-up boards and ticket systems have been successfully es-
tablished in some schools for solving the scheduling problem.
Students sign up for a specific time period; penalties may be
applied to those students who sign up but miss their segment.
Normally, however, there will be enough "interested bystanders"
to use that scheduled allotment of time!

In addition to the scheduling of terminal time, guidelines
regarding typical terminal usage may be helpful. Student users
can be classified into three broad categories:

CATEGORY TERMINAL USAGE

10 minutes/week
15-20 minutes/week
30 minutes and above/week

casual user
Average user
computernik

At the outset, it is anticipated that a successful program of
instruction requires one terminal to support 60 to 80 average

BARIE ols or 90 to 140 average users per week

users per week in public scho
in private schools.

when the instructional program becomes fully integrated into
the existing curricula (generally two years from the outset of the
program), one terminal is required to provide support for:

TYPE OF SCHOOL NO. AVERAGE USERS TERMINAL USAGE
Public 50 30-40 minutes/week

(2 sessions)

30-40 minutes/week

Private 100
(2 sessions)

A successfully implemented program of BASIC instruction eventually
requires that each student has access to the computer terminal at
least twice a week.

Whether a classroom or computer laboratory arrangement is
chosen, the preceding considerations and recommendations should aid
in laying the foundation for a successful program of computer in-
struction.

A .
Private school usage per terminal is greater than public school
due to more hours of computer access.

introducing the computer

Perhaps the most difficult hurdle to overcome in learning
anything new is the initial apprehension of dealing with the un-
familiar. For many students (and faculty members too!), communj-
cating with the computer requires preparation, explanation, ang,
most important, experience. The introduction to computer use is
not unlike a student's first experience with science laboratory
equipment; once the initial contact is completed, future encounters
are easier and confidence levels raised.

The first interaction between student and machine should take
place at the outset of the BASIC programming course. Students
who have some knowledge of how to operate the terminal find it
easier to understand programming concepts as they are presented
in class. Likewise, continued hands-on experience for the duration
of the course is critical to total understanding of the course mat-
erial.

The introduction to terminal use has been successfully achieyed
by using pre-written programs such as games, simulations, or drills
and practice problems. Most students have played games like TIC-
TAC-TOE or CHECKERS; students are generally challenged by the task
of beating the computer at number games like GUESS and REVERSE.

Many appropriate games can be found in 101 BASIC Computer Games,
which is contained in the BASIC programming Curriculum Package.

101 BASIC Computer Games can be used in conjunction with Getting
Started in Classroom Computing, which illustrates game playing with-
out a computer resource; once the game is understood by students,
the same game can be played on the computer. Role playing, dis-
covery learning and other ideas for classroom presentations, dis-
cussed later in this guide, may also be used successfully at the
introductory level.

If students are not mathematically oriented or the class's
and abilities are highly diversified, simulations may
interests ely used in the introduction to computer use. Of the
be effectIVIIYSimulation programs that are currently available,
HuntlngtonMARKET are the most applicable general interest programs.
poLUT and . hgton simulations may also be suitable for encouraging
other Hunting r interaction as they require little background

-compute A
StUding :Oaid can be "played" by individuals or groups of students.
k?owlztions stimulate student inquiry and are easy to use--a com-
Simu

tion which plays an important role in introducing the computer.
bina

course introductions have used drill-and-

ead of games and simulations. Regardless of

e of programs used, it is imp9rtant that prog;ams are easy
that students are familiar with the ?r9cess }nvolved 1n'

~TAC-TOE for games, addition skills for drill

d that the program encourages students to learn

some programming

practice programs inst

the typ
to use,
the program (e.g. TIC
and practice, etc.) an
more about the computer.

computer familiarization

In conjunction with the introduction to computer usage, ad-
ditional background coursework may be required before beginning
the study of the BASIC language. The structure and contents of
a course in computer fundamentals or computer familiarization pa,
vary depending on several factors: student level and ability,
duration of the course, size of the computer installation, ang
level of faculty expertise. Generally, a computer familiarization
course, designed as an introduction to BASIC programming, Provideg
students with additional information about the capabilities ang
limitations of computers, as well as the roles that computers play
in our daily lives.

Traditionally, computer familiarization has been considereq
by many educators as the least active, creative and challenging
segment of computer introductory coursework. For this reason
alone, in fact, familiarization has been omitted from many intro-
ductory programming courses. Although the topics themselves may
be "unexciting," many of the classroom ideas presented later in
this guide are applicable to computer familiarization and should
be implemented! Understanding computer fundamentals is one very

important factor in building an informed citizenry for the future.

10

hance the prese

pest metho

computer familiarization generally includes some or all of

the following topics.

note a

h -
e d of presentation.

Topics

History of Computing

computing Concepts
(pefinitions: hardware,
software, etc.)
(capabilities: speed,
reliability, etc.)

(Limitations: intelligence,

etc.)

Computers in Society
(Uses: business, gov-
ernment, education, in-
dustry)

(Social issues: privacy,
employment)

Career Opportunities

Recommendations are made which should en-
ntation of these concepts. It is worthwhile to
t the outset that the "lecture" approach to these topics,
sometimes required, is not the only, nor is it always the

Presentation Ideas

Peer-teaching
Research projects
Museum visits

Research projects
Experiments
Role-playing
Films

Field trips
Debates
Films
Simulation

Field trips
Guest speakers

Whenever possible, students should be actively involved in the
learning process, whether through hands-on computer experimentation
or through research projects and presentations. Increased moti-
vation and interest will result from the "learning by doing" approach

to computer fundamentals.

Additional ideas for coursework related to computer famili-
arization may be obtained from the Appendix and from the Bibli-

ography of Texts and Resources For Computer Uses in Education
which is contained in the BASIC Programming Curriculum Package.

classroom ideas

The strategies and methods implemented in BASIC programmin
courses have often been the keys to the success of those computzr
instructional programs. Although it is probably impossible to
effectively use all the recommendations described in this section
selected options will aid in the success of new instructional prol
grams. Some of the recommendations are discussed on the basis of
topics taught in traditional programming courses, such as flowchartin
and debugging; other suggestions and ideas have wide application to .
all facets of instruction.

Flowcharting

Flowcharting is sometimes taught as an introduction or as
an integral part of an existing mathematics course, independent
of computer use. In some schools flowcharting is not taught at
all. If it is desirable to expose students to this method of
analysis and organization of work as a part of the BASIC programming
course, several guidelines are recommended.

Flowcharting symbols should be reduced to the minimal number
required for efficient construction; typically, the symbols used
include the terminal (&), connector (@), decision (<), and
process (). Initial instruction should illustrate a simple
process such as going to the store, or getting up in the morning.
Flowcharts should never be stated in computer language terms, but
rather in terms of problematic or procedural language.

Frequently flowcharts have been required of students as a
normal part of program documentation. Correction and program trans-
ferability are facilitated when flowcharts accompany programming
work. In addition, the student has a completely documented program
to retain for future review or reference.

Many programming courses have required students to flowchart
problems initially; as the students become more competent, the
requirement is eased so not to impede progress. Flowcharting has also

been an effective tool to aid students in planning and logical analysis |

prior to writing a BASIC program.

12

pebugging

pebugging a ?rogram or correcting syntax and logical program
errors and retesting a program, has proven, in many cases, to be
the most challenging and valuable programming learning experience
1n fact, a student often gains more from debugging a program than'
from writing it! The debugging experience is analogous to the
activity of taking a test, discovering the incorrect answers, cor-
recting those answers, and submitting the test for a second correction!
and maybe a third. '

Debugging techniques and BASIC language debugging aids are
giscussed fully in A short Course in BASIC which is contained in
the BASIC Programming Curriculum Package. However, some additional
comments are worthwhile.

students should be encouraged to discover their own mistakes,
and to experiment with the computer to achieve a fully operational
program. Teacher aid should be given only when the student has
given sufficient effort to the problem. Student-student interaction
should be encouraged, especially for debugging tasks. Not only
does student interaction release the teacher to handle the more
difficult problems and reviews, but students learn from others'
mistakes as well as from their own!

syntax errors are the most basic errors and are generally easy
to discover. For example, if a student misspells PRINT in a program
line, a quick check of that line readily reveals the error. Com-
puter diagnostics or error messages also point out this type of
error to students.

Logical errors are more difficult, sometimes nearly impossible
(it seems!) to find. It is a good practice for students to check
their written programs against their flowcharts to ensure that
the process is fundamentally correct and that it has been properly
translated into BASIC. Hand execution of a program often reveals
a logical program error; thus, it is highly recommended that
students be introduced to this procedure.

13

Classroom Demonstrations

Many methods of presenting classroom examples, illustrations,
and demonstrations have been used in BASIC programming instruction.
Different and equally creative strategies have been used for teaching
BASIC language elements and concepts, writing programs, and illus-
trating the output of a program. Several of these practices are
discussed and recommended for incorporation into BASIC courses.

In teaching BASIC programming concepts, particularly the elements
of the language, examples have traditionally been used that incor-
porate the newly introduced language statement in a sample program.
This exercise typically is executed at the blackboard with encour-
agement given for student participation. Although this approach is
often sufficient, other methods are equally, if not more, effective.

The "discovery" approach is an example of an alternative
illustrative method. Students are given a worksheet containing
simple BASIC programs; new BASIC statements are incorporated into
these programs. Using the computer, students run the program in
order to discover the operation of the statement. This discovery
approach is particularly useful when coupled with hand execution
of the program; the computer solution is then compared to the
students' calculations! The topics in BASIC programming particu-
larly appropriate for this approach include order of operations,
special functions (SQR, SIN, etc.), BASIC commands (LIST, SCR,
DELETE, etc.), and programming techniques (round off, looping,
ordering numbers, etc.)

14

i

A number of alternative method§ are also possible for
esentations related to program writing. Students may write
= m assignments at home or outside of class. However, sig-
Pfggr:nt learning has taken place in classrooms where students
ni eratiVEIY mcreate" a program. Group programs can be written
C?oﬁ or without a flowchart model which the class has' constructed.
z;ze written, the program can be run and debugged by the entire
Alternately, programs can be designed with intentional

class. 5 f ;
e students programming and debugging experience.

errors to giv

The classroom display of program output can be achieved in
several ways. Some CRT terminal;,_such as the DECFerminal, are
designed to drive standard television mon1tor§ avallabI? from many
school A-V departments. Classroom demonstrations are simple and

effective where such equipment is available.

However, several alternatives are possible with hard copy
terminals such as teletypewriters and DECwriters. Some schools
have implemented the use of opaque projectors tg display program
output to the entire class. As the computer prints its results
on the terminal, the paper is transferred to the projector so that
students essentially receive immediate feedback of results. Another
method involves the use of Ditto masters; terminal paper may be
replaced with a master and program results recorded. Each student
then receives a copy of the output for his own records.

Activities, Projects, and Student Involvement

Many of the creative classroom ideas recommended in this
section have been successfully implemented in all areas of school
computer instructional programs. None of the ideas or strategies
are restricted to use in BASIC programming; rather, all provide
fresh ideas that may be integrated into BASIC coursework.

Role playing has been used with excellent results (according
to b?th teachers and students) from grade school children to uni-
verS}ty engineering and business management students. It is a
particularly good approach when applied to computer fundamentals such
as computer operation and architecture. Role playing is also appli-
cabl§ to program execution and the function of BASIC language elements.
Getting Started in Classroom Computing illustrates one of the many
ways that this approach can be used in classroom instruction.

15

aAn alternative in dealing with multi-level, varied-skill stu-
dents is to provide the same open-ended project to the class. Ad-
dents will work through the entire project and, perhaps,

ced stu -
PEER GROVPS ;::ign their own extensions to the problem. Slower students are

CAMNES able to experience the satisfaction of completing the "required"
CoMPUTERS

segment of the project and w%ll be positive}y motivated if they
exceed the teacher's énd their own expec?atlons. An excellent
example of such project (T}-le i of Life) can be found in Under-
standing Mathematics and Logic Using BASIC C9EBEE§£h§EEg§: this
book, published by DIGITAL, is not included in the BASIC Program-
ming Curriculum package.

Field trips and guest speakers give students diversion from

! normal classroom activities and broaden tbe%r.knowledge of computing
and the use of computers. For ex§mple, visiting t?e }ocal‘news-
paper production facilities may give students new.1?51ght into the
use of computers in the publishing industry. Inviting a represen-
tative from a computer manufacturer to speak to a class can pro-
vide students with information about the manufacturing, assembly

‘ i esting of new computers.
Peer teaching has provided challenge and motivation in many and t g

classrooms; it is particularly appropriate when student ability

levels are varied, and classes are relatively large. Student in-

volvement in teaching creates a healthy environment for learning

and interaction; students tend to take on a major share of re-

sponsibility for their own learning and for the achievement of

other students. The teacher becomes a resource, a guide--and is Points to Remember
free to deal with individual problems on a regular basis. S

A few additional suggestions that have not been mentioned
relate directly to the teacher's role, not cnly in a BASIC pro-
gramming course, but in all teaching endeavors. Lest they be
forgotten, they are repeated here:

Student involvement can be utilized in several different ways:
students act as tutors, helping others with programming problems;
they research topics and make presentations to the class; they
"control" the computer facility and are responsible for computer
operation. In any case, valuable learning takes place while
students have the opportunity to develop qualities of leadership
and responsibility. !

NEVER FEEL THAT YOU NEED TO KNOW ALL THE ANSWERS! Particu-
larly in the beginning, it's probably impossible to know them all.
students have been known to be so motivated by computing, and have
so much extra time on their hands to experiment and discover, that
few teachers can keep up with them. Use that student resource as
much as possible. Capitalize on the opportunity; when the answer
isn't at hand, use the peer teaching approach.

There never has, and likely never will be, a class of students ¢

that are the same level of ability with the same interests. For

this reason, group activity is an excellent approach and can be

easily integrated into a BASIC programming course. Small groups

of students may be assigned the same programming problem or pro-

ject; students work together to solve the problem and to help each

other understand the scope of the program. Group activity has been
exceedingly successful in writing simulation programs; students

actively work in concert to achieve the goal of a finished “"product".

One last reminder--REMEMBER THAT THE VERSION OF BASIC
THAT YOUR COMPUTER SUPPORTS MAY BE DIFFERENT FROM THE VERSION THAT
THE TEXTS AND RESOURCES ARE BASED ON. For this reason it is
essential that all programs and illustrations be tested on the
school computer prior to presentation of the concept.

le 17

three methods for
teaching basic

choosing the method for teaching BASIC programming is as
jtical as the planning of the computer facility and plays an
?rportant role in the ultimate success of the program of instruction.
im

Three possible methods are discussed here:

(1) self-teaching method (programmed instruction)
(2) Short course method (ten two-hour sessions)
(3) Integrated course method (semester or full year)

Each method has a unique set of requirements and considerations
which must be understood and upon which a choice must be based.

1
self-teaching method

The self-teaching method is accomplished by using a pro-
grammed instruction or self-teaching BASIC text at the computer
terminal. Students acquire hands-on expertise as they perform the
daily lesson assignments and generally are able to write BASIC
programs within two to ten hours of beginning this type of instruc-
tion. This approach permits students to work independently, at their
own pace, while it frees the teacher to deal with individual prob-
lems. Should several students have trouble with the same concept,
group tutoring sessions can be designed using A Short Course in
BASIC.

Two self-teaching BASIC texts are included in the BASIC Pro-
gramming Curriculum Package: Populution (for grades 9 and above)
and Chapter 1 of the EduSystem Handbook (for grades 7 and above).
Additional programmed instruction texts are listed in the Appendix
of this guide. Regardless of the text that is chosen, each stu-
dent should have a personal copy to facilitate the recording of
answers.

19

the differeneea ' Y lmportant when using this method that
etween the versions of
Che et S BASIC supported by

y Because
: any discrepancy in language

cause great i it i i
hefore She g confusion if it is not pointed out

. In addition, student reference handouts are critically
lmportanF in this method. Because students are learning BASIC at
the t?rmlnal, questions or problems not only impede progress,
are llgely to waste valuable computer time. Many problems can

be €asily avoideq if students are provided with reference cargs
or handoutsg for error diagnostics, special function operations,
Procedures for Punching paper tape, debugging aids, complex BASIC
commands or instructions, and the differences between the versiong
of BASIC supported by the computer system and the text.

but

The self-teachin

g method has been successfully used with
small classes where s

ufficient terminal time is available for each
It has been Particularly successful in teacher training
sessions and faculty workshops. In some cases this method has
been combined with a second method; the self-teaching approach is
used for a single one-hour session to familiarize students with
terminal operation and several simple BASIC instructions. This
session is then followed by continued instruction utilizing either
the short or integrated course method.

Whether the self-teaching method is used alone or in conjunction
with another approach, it has been observed that the hand§-on
experience provides increased student motivation and perm%ts stu-
dents to achieve a knowledge of the BASIC language at their own
pace.

A

S -

2

short course method

The short course method combines teacher Presentations of
BASIC language elements with hands-gn computer experience through
a series of exercises and class assignments. 2 short course is
generally designed as ten two-ho?r or twenty one-hour class sessionsg
student programs are normally written and testegd outside of these
classroom sessions.

The short course approach can consist of a two week mini-course
or a ten week course with one session per week. It has been imple-
mented as part of a beginn1§g élgebra ?ourse and as a course of in-
struction independent of existing curricula.

A short Course in BASIC, which is contained in the BASIC
Programming Curriculum Package, contains a full discussion of the
teaching approach for the short course method. The order of
topics in the text was selected as the mo§t successful of gany
classroom-tested sequences but m?y be eas;ly.altered to sult local
requirements. The discussion which accompanies each topic goes
not reiterate the discussions contained in the numerous avall?ble
BASIC tests; instead, it deals with items t?lated to-each_tOplc that
should be emphasized in classroom pres?nFatlon, provides 1Qeas for
effective teaching, and references additional resources which may
be used to augm2nt discussion, exercises and activities. Each of
the ten lessons contain exercises that may be usgd for classroom
demonstration or student assignmen?s. The exgrglses are elementary
and can be used with students of different ability levels.

The short course method has been chosen by many scthls for
advanced students and faculty training and has bgen pértlcularly
successful where a school-wide computer program is being establi-
shed.

21

3

integrated course method

This method, like the short course method, combines clagg
presentations of BASIC language concepts with hands-on canputeioom
pProgramming experience. Integrated courses are semester or full
year courses and are often taught in conjunction with existing
mathematics or science curricula.

The integration of BASIC programming and mathematics or
science courses can be implemented in several ways:

(1) BASIC programming is taught at the outset
of a mathematics or science course. Alge-
bra I is often considered the appropriate
course for this integration.

(2) BASIC programming is taught in weekly ses-
sions, as part of math or science. For ex-
ample, Monday through Thursday algebra is
taught, and BASIC is taught on Friday.

(3) Programning concepts are scattered through-
out a mathematics or science course; pro-
gramming topics are introduced as they are
applicable to the math or science topics
currently being studied. For example, dis-
cussion of BASIC matrix operations and tri-
gonometric functions would be postponed
until those topics are reached in the math-
ematics curriculum.

Choosing the approach for implementing the integrated course
method depends on individual preference and the limitations of the
local situation. For example, if the available computer facility
is too small to accommodate all interested students, approach (1)
might be used. A single class in BASIC programming could be scheduled
at several different times during the year; in this way computer
scheduling conflicts are reduced and participating students have
ample computer time to complete hands-on work.

22

b integrated course method has been successfully implemented
peginning at the ju?ior'high sc@ool leve}. Many teachers have
considered programming instruction ?f.thls nature as "advanced"
coursewazk and have, as a re§u1t, limited enrollment only to above-
average students. However, in many schools, low-ability students
have gained tremendous benefit from this exposure to programning.
Because programming concepts are not difficult to learn, low-
ability students are able to achieve repeated successes with the
computer“and each success provides the motivation necessary to
encourage students to achieve higher goals. 1Indeed, the integrated
course method has resulted in exceptional achievement for all levels
of students.

Numerous texts and resource guides are available for use in
a one-semester BASIC programming course. Many of these resources
are referenced in the Appendix; others are listed in the Bibli-
ography of Texts and Resources on the Uses of Computers i;_—--
Education which is contained in the BASIC Programming Curriculum
package. In addition, A Short Course in BASIC can be modified to
suit the needs of the integrated course method. Additional ideas
for classroom discussions and activities are contained in the
next section of this guide.

23

. sl

This inde
references for eac
is geparate

part

Part

Part

x contains individual BASIC programming
h topic to several selected texts.

d into three parts:

index of basic topics

topics and
The index

I: Discussion Index
References chapters within
the texts that contain good
discussions and explanations
of BASIC topics.

II: Assignment Index
References chapters within the
texts that contain exercises
and student assignments for
BASIC topics.

III: Project Index

References chapters within the
texts that contain ideas for
projects and additional activi-
ties for BASIC topics.

25

9z

Lz

PART I:

DISCUSSION INDEX

TOPIC BLAKE EDUSYSTEM
= SLEE COAN KEMENY PAVLOVICH _ HANDBOOK SLIDE
Teletypewriter Appendix A 1 1A or 1B
Errors Chapter 10 Appendix B 13-14 21 6-26 to 28
PRINT 3-1 to 3-9 1-3,10 5-9 11-19 1 6
Order of Operations 4-9 to 4-17 4 8-9 22-24 1 2
Special Functions 7-1 to 7-10 47-48 26-27 47-54 6-26 22
Direct/Program Mode 1-3 to 1-4 6-3 3
Line Numbers 2-5 13 10-11 1 3
SCR, LIST, RUN, 1-3 to 1-4, 4-5 12 11 1 18 and 19

CTRL/C 10-2 to 10-3
END 2-6 2 5-9 12 1 4
Variables 2-3 to 2-4 8 8 31-32 1 2
String Variables 2-4 33-37 71-78 6-8 to 10
LET 4-7 to 4-18 5-6 5-9 29-35 1 5
INPUT 3-3 to 3-4, 91-100 12-13 41-43 6-4 7

4-1 to 4-2

TAPE/KEY Appendix A 7-8 6-39 to 40 21
REMARK 3-3, 11-1 13 42 111 1 14
GOTO 5-14 3 6-9 79-83 1 9
Floating Point 2-1 7-8 8-9 19-21 1

Numbers

EDUSYSTEM

TOPIC BLAKESLEE COAN KEMENY PAVLOVICH _ HANDBOOK SLIDE

Size of Numbers 2-1 57 b}

Significant Digits 57 1

Flowcharting 11-1 to 11-2 13-15 60-62,69 1

Appendix D

IF-THEN 5-10 to 5-14 15-22 6-9 67-71 1 11

STOP 5=16 to 17 59 81 1 16

FIX(X) 6-8 22

TAB (X) 3-9 to 10, 217-219 53-54 18 1 22

9-1 to 2

EDIT 267-269 6-29 to 6-30 20

ALT MODE 27-28

Direct GOTO 6-3

Abbreviated Commands 6-2

Appended Comments 6-4 to 6-5

Commands After 6-5

IF-THEN

Multiple Statements 6=2

per Line

FOR/NEXT 5-1 to 5-7 26-31 l6-18 91-96 1 10

Nested Loops 5-7 to 5-9 31-34 18-20 96-98 1

DEFINE 7-8 55-61 27-30 130-146) 12

=14

6c

EDUSYSTEM

TOPIC BLAKESLEE COAN KEMENY PAVLOVICH _ HANDBOOK SLIDE
GOSUB/RETURN 8-1 to 8-5 41-45 30-31 107-113 1 »
READ/DATA 4-2 to 4-6 3-4 5-9 35-38 1 8
RESTORE 4-6 to 4-7 100-103 38-40 1
DIMENSION 6-3 to 6-4 66 23-25 103-104 1
Subscripted 6-1 to 6-16 35-38 21-25 101-105 1
Variables
ON-GOTO 5-14 to 5-15 66 83-85 6-6 17
ON-GOSUB 6-6
RND (X) 7-10 to 7-13 62-69 65-67 49-51 1 22, 15
RANDOMIZE 7-13 67 50-51 6=7 15
LINPUT 6-10
Comparing Strings 77 6-11
CHR$ 6-11 to 6-12
MID 6-12
LEN 6-13
CAT 6-13
Debugging Chapter 10 39-43 148-154
PART II: ASSIGNMENT INDEX
TOPIC BLAKESLEE COAN KEMENY PAVLOVICH SMITH
PRINT 3-11 11-12 10 15-24, 31-34, 37-44, 109
117, 120
TAB (X) 3-11
INPUT 4-19 96, 100 14-15 43,66-67 35-36
READ/DATA 4-19 11-12 10 40-41 43-44
FOR/NEXT 5-18 to 5-19 31, 34-35 20 101 57-59, 71-74, 97, 104,
IF-THEN 5-18 to 5-19 22-23 10 71 i§i24, 31-34, 37-44, 109
117, 120
GOTO 5-18 to 5-19 10 85 15-24, 31-34, 37-44, 109
117, 120
LET 11-12 10 15-24, 31-34, 37-44, 109
117, 120
Order of Operations 11-12 24-25 23-24
Special Functions 7-14 to 7-15 50 32 56-57 23-24, 108
Variables 11 9
Flowcharting 22-23 62
Numbers in BASIC 11-12 9 58-59 23
Manipulating 37-38 78, 129-130
Strings
GOSUB/RETURN 8-6 45-46 32 117-118 67-68, 71-74, 105, 107
Debugging 43 3
61 32 l46 63-66, 71-72

DEFINE

o€

TE

TOPIC BLAKESLEE COAN KEMENY __ PAVLOVICH SMITH SESENEES
RESTORE 103
Subscripts 6-17 38-39, 25 105-106 46-56, 69-74, 110, 114=
’ 45-46 116, 121, 129-130, 133, 14
Sorting 45-46 25 48-49, 122-123, 127-128
Random Numbers 7-14 to 7-15 72 74-75 103, 106, 111-113, 118
Nested Loops 5-18 to 5-19 34-35 20 60-62, 71-74, 119,135-136
PART III. PROJECT INDEX

APPLICATIONS BLAKESLEE COAN KEMENY PAVLOVICH SMITH

Graphing 9 53-56 171-180

Trigonometry 47-50,56 154-171 131-132

Appendix C

Geometry Appendix B

Analytical Appendix D

Geometry

Calculus Appendix E

Algebra Appendix A

Probability 13 17 Appendix F 149-150, 155-158

Statistics 15 225-235 101-102, 137-140, 159-

164
Number Theory 48,54,70-78 57-64
104-113

Quadratic Function

Analysis 8

Complex Numbers 10

Polynomials 11 50-53, 56 181-187

Matrices and Vectors 12 16 8 75-96

6-8 to 6-13 40-45 23

Sorting

(A3

APPLICATION

BLAKESLEE

COAN

Area Under a Curve
Files

Text Processing/
Coding

Special Topics

Business

Simulations

Games

KEMENY PAVLOVICH SMITH
235-257

13

14

Appendix G

12 141-145, 147-148, 151-
152

65-75 126

11 125

appendix

pASIC TEXTS

Introducing BASIC. EduComp Corporation,

Blakeslee, Theodore.
1972.
coan, James. Basic BASIC. Hayden Book Company, Inc., 1970.

BASIC Programming. John Wiley

John and Thomas KRurtz.

env.,
. | 1971.

and Sons, Inc.,
Computer Programming in

pavlovich, Joseph and Thomas Tahan.
BASIC. Holden-Day Inc., 1971.

Discovering BASIC. Hayden Book Company, Inc.,

smith, Robert E.
1970.

BASIC TEXTS (Self-Instruction)

Teach Yourself BASIC (Volumes I and II).
1970.

Albrecht, Robert.
Tecnica Education Corporation,

EduSystem Handbook. Digital Equipment Corporation, 1973.

Digital Equipment

Populution: A Self-Teaching BASIC Primer.
Corporation, 1972.

33

COMPUTER FAMILIARIZATION

Ahl, David H. (ed.). 101 BASIC Computer Games. Maynard, Mass. .
Digital Equipment Corporation, 1973.

Ahl, David H. Getting Started in Classroom Computing. Maynarg, Mabg
Digital Equipment Corporation, 1973. b

Ball, Marion. What Is A Computer? Boston, Mass.: Houghton Mifflip
Company, 1972.

Bower, Sally R. A Curriculum Guide for Teaching BASIC. Maynard, Masg
Digital Equipment Corporation, 1974. :

Ellsworth, Pamela H. A Short Course in BASIC. Maynard, Mass. :
Digital Equipment Corporation, 1974.

Gerald, Curtis. Computers and the Art of Computation. Reading, Massg..
Addison-Wesley Publishing Company, 1972. '

Rothman, Stanley and Charles Mosmann. Computers and Society. New York:
Science Research Associates, Inc., 1972.

The Computer: How It's Changing Qur Lives. Washington, D.C.:
U.S. News and World Report, 1972.

34 “‘J

L' W‘ﬁrv"ivr“- . . L -

A Curriculum Guide
for Jeaching BASIC

