Datopoint

o

Y

AAAAAAAAAAAAA

PogoM
sersGuioe

B wonlh

DATAPOINT BASIC

USERS GUIDE

DATAPOINT CORPORATION

Augqust 6, 1973

TABLE OF CONTENTS

D o
atapoint BASIC Language Features
lanual Conventions

Introduction to Datapoint BASIC

Modes
Constants
Variables
Implementation Limits on Variables
Statement Format
Remarks
REM
Assignment
LET
Arithmetic Expressions
Functions

INT

LOG
EXP

SQR
RND
SIN
Ccos
TAN
ATN
The GO TO Statement

The GOSUB and RETURN Statements
The IF Statement

The FOR and NEXT Statements

The INPUT Statement

The PRINT Statement

PAGE

11
12

13
14
15
16
16
17
17
18
19

19

19
19

19
19
19
19
19
19
20

21
22
24
26

21

The TAB Function

The READ, DATA, and RESTORE Statements
The STOP and END Statements

The RUN Command

Utility Commands

LIST

SCRATCH

SAVE

GET
Advanced BASIC
The DIM Statement
Use of Arrays

Use of Strings

Input and Output

PRINT #
INPUT #
LIST #
SAVE #
GET #

BEEP

CLICK

APP§

END #

IF EOF #
File Hints
Formattina Display Output
Formatting Servo Printer Output
Plotting with Servo Printers
Program Chaining
Hints on Writing Packages

Ooptimizing Usage of Work Space

PAGE
28
29
30
31
32
32
32
32
32
33
33
35
35
38

38
38
38
38
38
39
39
39
39
39

40
42
42
43
45
46
47

53

AP
PENDIX A (Instruction Summary)
APPEND
IX B (Numeric Values of ASCII Characters)

APPENDIX C (Error Messages)

PAGE
48
49

50

»

DATAPOINT BASIC

Datapoint BASIC Lanquaqe Features

Datapoint Corporation BASIC is a fully interactive alaebraic
lanquage for the Datapoint 2200. While it retains most of
the lanquage, simplicity and ease of use of the standard

Dartmouth BASIC, it has extensions to take advantage of the
unique qualities of the Datapoint. Such extensions provide 2
complete integration of Datapoint BASIC with all other
Datapoint systems and offers the user not only an attractive

independent BASIC system, but a powerful additional tool to
enhance existing Datapoint systems.

Features include:
* Arithmetic operations (+, =, *, /., 7)
* Arithmetic functions (EXP, LOG, SQR, INT, RND)
* Transcendental functions (SIN, COS, TAN, ATN)
* Loaical operators (¢, =, >, <=, <>, >=, §)
* Chaining and keyboard controlled execution

* Cassette tape input/output in standard Datapoint
file format

* Local, remote or servo printer support confiqured
automatically

* Unused printer support area released and added
to user’s work area

* Desk calculator execution of expressions
* Built-in debuagging aids
* Complete error messages

* Workspace save and restore on cassette tapes in
compatible Datatapoint file format

* Long variable names to improve readability
* Multiple statements per line
* String and string array processing

* Co-ordinate micro positioning of servo printer
for plotting

DATAPOINT BASIC
Manual Conventions

To help make this manual readable, some conventions arg
Necessary. Corner brackets--< and >--will be placed agouTn
words which describe a class of items that should stan

the place of of the corner-bracketed item. For example, E?g
manual will put the leqgend <diqit> in a place where you,
user, can type in any digit.

Square brackets--[and]--will be used to enclose optional
items. For example, if a digit may optionally be inC}Uded'
the notation would be [<digit>]. As another example, if the
word ‘TO’ may optionally be included, the notation is (TO].

DATAPOINT BASIC
An Introduction to Datapoint BASIC

§§n§e Some of the material that follows is rather abstract
s;t Out some framework, this section will take you through
Mme simple examples. Experienced BASIC programmers may wish

Eo skip this section. Because this section is a hand-holding

€arn-through-doing text, you will find that it is best rea
Sitting at a 2200.

Place a BasIC tape in the rear deck of the machine and
depress the RESTART key on the upper-rightmost part of the
2200 keyboard. This causes the 2200 to load the program that
makes BASIC available. It includes the instructions
Necessary to tell the computer how to calculate all of the
arithmetic you may ever use. Besides that are routines that
Will allow you to take the sine, cosine, tangent,
arctangent, natural logarithm, and exponential of any
nNumber. The remainder of the tape gives the computer
instructions on how to execute the rest of the BASIC
language described in the manual.

When the tape is finished reading, it prints out the version
of BASIC that you have loaded. Any messages to remind you
of release changes are also printed here. The next to the
last line is a reminder that you are starting out with a
clear workspace--that is, a workspace in the computer that

contains no variables or programs. Remove the BASIC tape
from the rear deck at this time.

The message READY indicates that BASIC is ready to accept a
new command. In addition, the cursor, a 1little block of
light that flashes on and off, shows itself at the bottom of
the screen. The presence of the cursor is your cue that
BASIC is waiting for you to type something. When it says
READY and flashes the cursor, it means that it wants you to

type some command to the BASIC system.
-

Try typing
217*.06

and finish by depressing the ENTER key (the largest key on
the 2200). BASIC interprets this as a command to calculate
217 multiplied by 0.06 and print the result. The answer can
be interpreted as the interest on $217 at 6% for one vyear.
This is an example of the desk calculator mode of BASIC.
Any arithmetic expression typed in as a BASIC command will
print the evaluated answer.

(5

DATAPOINT BASIC

If you followed the above instructions, BASIC will have

Printed READY again and is flashing the cursor. £
demonstrate the natural logarithm function, try typing

LOG 10

tC print out the value of the natural logarithm of ten.

The operations and functions include:

4+ Addition

- Subtraction

* Multiplication

/ Division

" Raise to a power
SIN Sine

COS Cosine

TAN Tangent

ATN Arctangent

INT Largest integer
EXP Exponential

LOG Natural logarithm
SQR Square root

RND Random number

Values can be “"remembered® by agiving those values to
variables. A variable is a named entity whose value can be a
number. A variable can be given a value by typing, for
instance.

LET PI=3.1415927

to qgive the variable named "PI" the value 3.1415827. The
variable name PI can now appear anyplace that numbers could
appear. Try

2%p1

to print out the value of two pi. A variable named PI need
not have 3.1415927 as its value. Do

LET PI=-7

and the variable named PI has taken on the value -7. To
prove it,

PI

should print out -7.

DATAPOINT BASIC

Instry
Ctions to
BASIC can also be laid out as programs. Type

10 P*(1+R/N)"N

and you have

Compounded stored an instruction t
representinqizﬁerest. P is the name o?at , caiguiagis
representing thg principal, R is the name of e
a variable that tzfarly interest rate, and N is t;e :g;éabé%
compounded. The ls how many times a year the interest i
the line tell BAg?gber 10 and the space at the beginning o?
actual numbier in L that this is statement number ten Th
Statements, th e M Witﬂ man;
in which they :1§;atement number is used to tell the orde
READY. This ha be done. Note that BASIC did not sa;
of the program L e s et sang
messages interspersed. o:ev be a nuisance to have the READY
still leqal. er fear, because commands are

You
can now set up the values of the variables to be used.

LET P=187
LET R=.0575
LET N=4

for a $187 principal at 5 3/4% interest compounded

quarterly. You can now type

P*(1+R/N)°N

and get the answer. But, because Yyou have stored that

program, You need only type

RUN
and the 2200 will go through all the stored statements in
numerical order. Ten is the only statement, and therefore:
with that

it will evaluate the expression You typed in

number in front of ite.

To see what the result would be for 6% interest. merely

change R bY typing

LET R=.06

and getting the new result out with

RUN
Jou might vant to trY changing the principal or the
s well.

compoundinq frequency 2a

V)

DATAPOINT BASIC

At this point you should feel in command of the desk
calculator portion of BASIC. And, you have written a
one-line program that was stored. Prepare to start a whole
new program by typina

SCRATCH

This erases the current program and variables and leaves you
with a clear workspace. Into this clear workspace we will
Place a program that computes the time necessary for an
obhject that falls off a desk to hit the floor.

10 REM COMPUTE TIME NECESSARY FOR AN OBJECT FALLING
20 REM OFF A DESK TO HIT THE FLOOR

These lines, 10 and 20, are REMark statements that are used
to document the program. A statement cannot be lonaer than
one line, so the comment had to be divided into the two
lines 10 and 20.

30 PRINT "THIS PROGRAM CALCULTES THE ELAPSED TIME"

Line 30 is a direction to print, when the program is RUM,

the phrase betwen the double quote marks will be printed.
Unfortunately, CALCULATES was misspelled. This, and other
€rrors are corrected by re-typing the line.

30 PRINT "THIS PROGRAM CALCULATES THE ELAPSED TIME"
40 PRINT “BETWEEN BEING PUSHED OFF A DESK AND"
50 PRINT “LANDING ON THE FLOOR FOR A HEAVY OBJECT."

Note that three separate PRINT statements were necessary to
type out the entire message. If you make mistakes, re-type

the line in error. You can delete an entire line by typing
only the line number.

60 PRINT
This prints only a blank line.
70 PRINT “WHAT IS HEIGHT OF THE DESK (FEET) 2?";

This PRINT statement will type out the material between the

double quotes (including the parentheses and question mark)
when it is run. After it has done so, it will 1leave the

cursor positioned at the end of the statement: this is the
meaning of the semicolon at the end.

80 INPUT HEIGHT

This statement, when RUN, will start flashing the cursor and
wait for you to type in a value for the variable named
HEIGHT. The value you type in will become the value of the

DATAPOINT BASIC

variable.

30 LET TIME = SQR (2*HEIGHT / 32.2)

This LET statement will compute a value for the variable
named TIME. It will arrive at that value by multiplying the
height in feet by 2, dividing by 32.2 (the gravitational

constant in ft/sec2) and then taking the square root of the
entire quantity enclosed by the parentheses. Now there are

two different variables -- HEIGHT and TIME.
100 PRINT TIME;" SECONDS"

Line 100 will print out the value of the variable time and
then the word SECONDS right next to it. The value of the
variable named TIME is printed instead of the letters T,I,M,
and E because there are no double quote marks around {it.
SECONDS, on the other hand., is printed with those letters
because it does have double quote marks around it. The

semicolon in the middle says to print them next to each
other.

110 END

The END statement identifies the end of the program. You can
get a listing of everything stored by typing

LIST

Because that line does not have a line number in front of
it, it is executed immediately producing a 1listing of the
stored statements that had line numbers in front of them.
Note that the program is listed in terms of increasing line

numbers even if you had to go back and correct some
statements.

It should appear like:

10 REM COMPUTE TIME NECESSARY FOR AN OBJECT FALLING
20 REM OFF A DESK TO HIT THE FLOOR

30 PRINT "THIS PROGRAM CALCULATES THE ELAPSED TIME"
40 PRINT "BETWEEN BEING PUSHED OFF A DESK AND"

50 PRINT "LANDING ON THE FLOOR FOR A HEAVY OBJECT."
60 PRINT

70 PRINT "“WHAT IS HEIGHT OF THE DESK (FEET) ?2";

80 INPUT HEIGHT

90 LET TIME=SQR(2*HEIGHT/32.2)

100 PRINT TIME;" SECONDS"

110 END

This program is now ready to go. To start it, type

DATAPOINT BASIC

RUN

If everything is in order, it will print out the three lines

gf introduction, a blank line, and then ask the question of
OW high the desk is. As a good test, try

16.1

a5 the response because that is the height at which it
ibould take a full second. After printing the answer, BASIC
ill show you that the execution ended at the END statement
and that it is READY. All of this is normal. The values of
variables are still available for inspection. Type

HEIGHT

and BASIC will reply with 16.1 showing that 16.1 1is the
value of the variable named HEIGHT.

This program can be used to find out the fraction of a
second needed for a penny to fall off your desk. Measure
(or guess) the height of your desk in feet. RUN the program
and enter the height. The answer is how long it would take

gir a penny, for example, to fall off your desk and hit the
oor.

The program can be made more convenient to use with a few
changes in the input and output formats. For example, it
would be much more convenient to specify the desk height in
inches. We can do this with additional statements: .

80 INPUT HEIGHTININCHES
85 LET HEIGHT = HEIGHTININCHES / 12

Note that you can put 1in spaces between parts of the
statement (such as before and after the replacement siqn (=)

and the division symbol (/)). These spaces are removed when
BASIC reduces it to the most compact form possible for

storage in the 2200. You cannot, however, put spaces in a
variable name 1like HEIGHT IN INCHES. Fix wup the query

statement with
70 PRINT "WHAT IS HEIGHT OF THE DESK (INCHES) ?2%;

Try RUNing the program with this new change.
Because (for most desks) the time taken is a small fraction

of a second, you might prefer to have it expressed in
milliseconds (thousandths of a second).

DATAPOINT BASIC

100 PRINT INT(TIME*1000);" MILLISECONDS"

This statement will (1) convert the TIME to milliseconds by
Multiplying by 1000, (2) use the INT function to drop the
fractional part left after multiplication -- this will leave

an integer and hence the name INT, and (3) print out the
word MILLISECONDS after the number of milliseconds. Note

that the PRINT statement can print the result of a
calculation.

LIST

Use LIST to list this version of the program. Note that the
re-typed lines have been replaced. Try

RUN

to see how this version works for a penny off your desk. If

You wish, you can save this program on a cassette tape for
later use. Type

SAVE

Wwith a casette tape in the front deck and BASIC will save
the program there for you. At some later time, you could
type GET to retrieve it into a clear workspace.

If there were several desks for which you needed this
calculation, it might be handy to have a table of the
results for common desk heights. One way to do this would be
to RUN the program over and over again and write down the
results. You can program BASIC to make the program work

over and over again. After the 1last statement of the
algorithm, you can place

105 GO TO 70

and the program will go back to line 70 after printing out
each answer. Therefore you can just type in desk heights and

writing down answers without typing RUN over and over again.
Try this out by typing

RUN

and running the program. When you do want ¢to stop the
program, the KEYBOARD key on the far riaht will do the job.
Hold it down until the Datapoint says “Interrupted."” This
key will always get things back to the place where you can
type in a command on the keyboard.

DATAPO I Ny BASIC

70 FoOR HE
e IGHTININCHES = 30 TO 40

105 NEXT HEIGHTININCHES
Typing go without an

The other two lines enclose an area
for values of
to 4:; T?e NEXT HEIGHTININCHES
me for BASIC to repeat
typing next value for HEIGHTININCHES- Runpthis tgs

Ther i
€ 1s only one Problem remaining. wWe do not know which

answer goes with wh
fixed with tch value of the height. This can be

100 PRINT HEIGHTININCHES.INT(TIME*lOOO)

Y?iCh wWill print the height and the time together on one
. gg when executed. The comma between the two values

nNdicates that they should be Placed in two columns. The
Columns can be labeled with

65 PRINT “HEIGHT","TIME"
67 PRINT "INCHES*,"MSECS"

which will put labels at the top of the columns. Try this
version with

RUN

Would you like a CopyY on paper? Just change the PRINT
statements to refer to the printer, device number 4.

65 PRINT #4,“HEIGHT","TIME"
67 PRINT #4,"INCHES","MSECS"
100 PRINT #4,HEIGHTININCHES, INT (TIME*1000)

RUN

You can also get a copy of the program with LIST #4. 1If you
still have the tape you SAVEd the older version of tf:
it
ram still in the front deck, you can overwrite ¢
$gngish. by typing SAVE again. Note that the printer must
be ON (and ON-LINE if a Local Printer) during initiil
loading of BASIC since this is when the automatic

determination of printer type is made.

10

DATAPOINT BasyC

This mo
cursor.deAighésg;cgzsgcb: e norrd READY and Ehashing
comm oes not reply READY

and mode after accepting a statemgnt to éei§t§§9355° =

Inpu -

va?u;sm?ge This mode occurs during an INPUT statement when

Stiract 3 tfvariables are required of the operator. The

programls lashing. It is the responsibility of the stored
to indicate what information should be entered.

of instructions,

Running mode - During actual execution
and the keyboard

QASIC leaves the cursor turned off
lnactive.

Depressing the KEYBOARD key at any time will cause BASIC to
re-enter command mode regardless of the current mode.
Therefore, depressing KEYBOARD can be used to terminate
input or to regain control from a runaway program. Hold

down the key until BASIC responds with “Interrupted.” If
the last statement

BASIC was not in command mode already.
executed in the current program is displayed. The program
can be continued by use of the GO command referencing the
current line (in the case of I1/0 statements) or the next
line (in the case of all computational statements).

Holding down the DISPLAY key at any time will prevent the
screen from "rolling up® and losing the top line.

11

DATAPOINT BASIC

Constants are values that do not change. There are two

varieties: (1) Numeric constants whose values are numbers

and (2) String constants whose values are “strings"® of
characters.

Examples of numeric constants:

1 has the value +1.0
1.0 has the value +1.0
-1 has the value -1.0
=1.01 has the value -1.01
2345 has the value 2,345.

Commas are never used in numbers in BASIC.
12E2 has the value 1,200.
The E is read "times 10 to the"
1.2E6 has the value 1,200,000
1E-2 has the value 0.01.
-2.3E-4 has the value -0.00023.

String constants: (Note: String constants are always
described to the system in quotes)

“R" has as its value, the letter R
"RS"* has as its value, the letters R and S
b has as its value, the symbol known as "one"
“YES" is the string constant for the
3 symbols that make up the word “YES"
"WHAT IS THE NAME OF THE 2ND BASEMAN?2"
is a rather long string constant

String constants are totally defined by the characters
making them up and the positions they occupy. That 1is, the
constant "YES" can be analyzed by your BASIC program to
determine the fact that it is 3 characters in length, that

the first is a "Y", that the second is an "E" and that the
last is an “S*.

12

DATAPOINT BASIC

Variables are values that can chanqge. Because of their
chanqeability. they are referred to by names. BASIC
variable names begin with a letter. Other letters and
numbers can follow if there are no embedded spaces.

Examples of legal names for variables:

A

B4

BQ

CLASS

FOREVER 73
YEARTODATEEARNINGS
YTDEARNINGS
CODEZEBRAY9

The following are illegal variable names in BASIC:

7A does not begin with a letter
YEAR~-1 cannot have a dash
LET cannot have a variable named the

same as a BASIC operator or command
REM8 cannot begin with REM (special rule)

Variable names cannot begin with REM because those letters
are reserved for inserting REMarks in programs. The BASIC
operator and e¢ommand names that cannot be used are:

]

THEN NEXT TO GO GOTO INPUT PRINT GET
RUN APP SCRATCH EXP SIN LOG COS SQR TAN ATN GOSUB
AND OR NOT CLICK TRUE FALSE END STOP INT BY

Hintst: Variable names formed with one letter, or one letter
and one number are traditional BASIC and cannot possibly
conflict with the reserved words listed above. Keeping to
the traditional BASIC variable name rule will allow your

program to be directly executed on other BASIC systems
later, if this is a consideration.

For the advanced programmer: BASIC variable names may be of
any length but are implicitly limited because a statement
cannot be broken over lines. The following symbols are also

13

DATAPOINT BASIC

s: § and _
considered alphabetic for use in variablersnigzd in variable
(dollar and underline). Lower case 1ett§ hed are distinct
names are permissible, but the names 8O zination of lower
from those with different casing. Rny COMBEL 0 0 g neifier
case letters and numbers forms a valid nly. Any symbo
because all reserved words are upper-case ? remark so such
beginning with REM is taken as the start g aNote that the
variables as REMAINDER should be avoided. BASIC
lower case variables are unique to Datapoint .

Implementation Limits op Values

All numeric values are stored internally in Da?;potz:S)BASZg
te

as floating-point numbers with one by

characteristic and three bytes (24 bits) of mantisga. Alé

floating point numbers must be normalized at all times an

the sign is therefore taken to be the complement of the most
significant bit of

the mantissa. Zero is the only
unnormalized number permitted. As a result of thig
representational scheme, very small numbers which coul

ordinarily be expressed as an unnormalized number with the
smallest exponent cannot be represented in BASIC.

The largest number representable is approximately 1E38. The
smallest positive number representable is approximately
lE-38. Precision is ideally 24*(log base 10 of

2) or 7.22
digits. However, values are rounded to 6 digits

on output.
Note that subtracting similar numbers will lead quickly to a

loss of precision. Zero fill is used in normalization.

Overflows during arithmetic will be indicated with the
message “OVERFLOW." The characteristic has exceeded the
maximum size. Underflow is not announced, and the offending
result is placed to zero.

14

DATAPOINT BASIC

Statement Format

BASIC

QXECUt:Ea;:megts can be stored for later execution, oOr
ine numberm:néately- If a BASIC statement is preceded by a

that line e a space, that statement will be stored under

ey (0-38335. If the statement begins without a line

StaSamanie §)¢ BASIC will attempt to execute the

iy mmediately. This latter mode 1is useful for

S and desk calculator like operations.

Spaces

example'.nust be used to make BASIC programs readable. For
LETCOUNTER =7

1s confusing to you and to the computer. 1t would be

Correctly written

LET COUNTER=7

Where one space can appear, many may. Spaces are also legal

between parts of statements as in

LET COUNTER =7 + 9 * (2 * 8)

within a single variable name oOr

Spaces may not appear
The following is ILLEGAL:

within a BASIC operator.
LE T COUNT ER = 0
because spaces occur in the middle of LET and COUNTER.

Multiple statements per line separated by semicolons are
permitted. The following are correctly formatted:

LET OneMore=OneMore+l
10 LET OneMore = OneMore + 1; A=B=C=0

20 PRINT “"HI THERE YOU ALL"
LIST

The following are INCORRECTLY formatted:
space missing after PRINT

PRINT2+3
104568 HI=1 line number too big
LETA=5 space needed after LET

15

DATAPOINT BASIC

Form: REM[<any sequence of characters>]

Examples:

REM THIS PROGRAM CALCULATES THE INNER PRODUCT

REM THE NEXT SECTION CALCULATES THE INTEREST
REMBRANT WAS A GREAT PAINTER
REM PRINT "HI THERE"

The REM statement allows comments within a BASIC program.
Although the comments make the program more readable, they

take up space that could otherwise be used for

active
statements.

The REM statement is completely ignored when it is executed.
Even the last example will have no effect. Putting valid

BASIC inside a REM comment is as effectively ignored as any
other information.

Only the first three letters need be REM. NO space is

ception to the
necessary after the REM. This is an ex

general rule that spaces must be present between statement
parts.

16

DATAPOINT BASIC

Form: [LET] <variable>=<expression>

Examples:

LET A=19
LET TOTAL=PIECEl + PIECE2
MANE = LION / FUR

An assignment or replacement statement is used to give a
value to variables. The value may be a constant or it may

be computed as an expression involving any of the arithmetic
operations. Parentheses may, of course, be used to form a

complicated expression. The word LET is optional and may or
may not appear as desired.

17

"

DATAPOINT BASIC

Arithmetic in BASIC is performed by means of arithmetic

operators, arithmetic functions and transcendental
functions. They can operate upon:

Numeric constants
Numer ic variables

and to be discussed later:

Fully subscripted vectors and arrays
Fully subscripted strings or string vectors

* Addition
= Subtraction
" Multiplication
/ Division
N Raise to a power
INT Take the largest integer
LOG Natural logarithm
EXP Exponential
SIN Sine
Ccos Cosine
TAN Tangent
ATN Arctangent
SQR Saquare root
RND Random number
Examples:
+3* Operations are done in “normal" mathematical order

so that the multiplication is carried out before
the addition. "Normal" mathematical order is
roughly from the bottom of the list above to the
top. If in doubt, use parentheses to force order
of evaluation, Result is 14.

(2+3)*4 Parentheses forced 2+3 to be evalued first. Regult
is 20.

{245/6 1lleadal because a right parenthesis is missing.

INT .8 Zero. INT finds the largest whole number that is

less than or equal to the value of the expression.
INT 1 is 1. INT 1.253 is 1. INT =-1.9 is -2.

18

-

DATAPOINT BASIC

SQR 4 Iwo. This can also be written SQR(4).

SIN .1 Very close to .l. Angle given to SIN and COS is in
radians. Likewise, ATN returns a result in
radians. Multiply deqrees by 3.14159/180 to
convert to radians.

13 Four squared. Four is raised to the second power-.

SQR(4+]2) Four. The square root of 16.

SQR 4+12 Fourteen. Without parentheses, the square root is
taken first and then twelve is added.

Random result between 0 and 1. The 1 is a dummy

argument to satisfy function syntax requirements.

Gives the largest integer between -8388607
and +8388607 that is less than or equal to

of the expression.

to the power of the

of the expression.

RND 1
Functions
Form: <function> <expression>
Arjithmetic functions:
INT
value of the expression.
LOG Gives the natural log
EXP Raises E (E=2.718282)
expression value.
SQR Gives the square root
RND Gives a random number

expression is a dummy

Trancendental functions: (expression

SIN

cos

TAN

ATN

Gives the sine of the

between 0 and 1. The
argument.

value in radians)

expression.

Gives the cosine of the expression.

Gives the tangent of the expression.

Gives the arctangent of the expression.

19

DATAPOINT BASIC
IThe GO TO Statement

Form: GO TO <linenumber>
GOTO <linenumber>
GO <linenumber>
TO <linenumber>

Examples:

GO TO 120
GOTO 90

GO 65

GO TO ABC
GOTO (100*I)

The GO TO statement transfers control of execution.
Crdinarily, the BASIC program is executed in 1line number
order. Encountering this statement changes the order of
execution. The next statement is the one specified.

The <linenumber> can be specified as a number which
represents a line. If, upon execution, no such line exists.
the message "No such statement® will be printed and
execution will halt. <linenumber> can also be a variable
which has as its value the number of the line to be executed

next. Expressions are also legal if they are enclosed in
parentheses as in the last example.

For the advanced programmer: <linenumber> can be omitted.
and the first 1line of the program is then executed.
Therefore, the command *GO" is useful to start programs if
the initialization performed by the “RUN* command is not
desired. This is commonly the case if extensive work 1is
being done in direct execution mode and indirect mode |is
entered only as an aid to the direct execution.

When a program has been arrested with the KEYBOARD key., the
GO statement can be used to continue execution at a
specified 1line number. The statement printed out at
execution arrest is the last statement executed. The GO
statement should be to the next line number.

20

DATAPOINT BASIC

IThe GOSUB and RETURN Statements

Form: GOSUB [<linenumber>]
RETURN
Examples:
GOSUB 19
GOSUB (10*I)
RETURN

The GOSUB and RETURN statements can be used to make
subroutines in BASIC. The GOSUB behaves exactly like a GO TO
except that the next statement number is remembered. When a
RETURN statement is executed, the statement after the GOSUB
Will be executed.

For the advanced programmer: GOSUBs can be nested so that
subroutines call subroutines to a limited depth. GOSUB

without an argument will GO TO the first statement of the
program.

GOSUB can be used 1in direct execution mode to debug a
subroutine. Set up applicable variables. GOSUB <linenumber>
in direct execution mode will cause the subroutine to be
executed. At the return statement, control is returned to

the operator. Variables and/or output can be examined for
correct operation.

RETURN executed as a direct command will remove memory of
the 1last GOSUB from BASIC and otherwise act as a
no-operatione.

21

DATAPOINT BASIC

‘ Ihe IF Statement

F s
orm IF <condition> THEN <linenumber>

IF <condition» THEN <BASIC statement>
<condition> is defined as:

NOT <condition>

<condition> AND <condition>
<condition> OR <condition>
(<condition>)

<relational>

<relational> is defined as:

<expression><relational operator><expression>
<relational operator> is:

< less than

<= less than or equal

= equal

>= greater than or equal
> greater than

<> not equal

. ¥ not equal

Examples:
IF COST>10000 THEN 50
IF COST>10000 THEN PRINT "Cost too high"
IF A=B THEN GO TO (23+C)
IF A<B AND A<C THEN 19
IF NOT A<=B THEN PRINT “A greater than B"
IF N1=1 AND N2=2 OR N3=(1+2) THEN LET FOUR=4
IF (A=B OR C=((SIN 5)/D)) THEN PRINT TAB(9)
IF A<l THEN IF B>=2 THEN IF C=3 THEN END

" The IF statement allows the programmer to make a decision
based on the values of expressions composed of variables and
constants. Comparisons can be made using the operators <,

- <=, =, §, <>, >=, and >. These conditions can be compounded
using the operators NOT, AND, and OR. Use parentheses to
indicate order of complicated conditions.

When the condition is false, BASIC ignores the rest of the
statement. When the condition is true, BASIC examines the
part of the statement after the word THEN. If the word THEN
is followed by what could he a linenumber, BASIC simulates a

22

DATAPOINT BASIC

GO TO to th
at linenumber.
to BASIC like a linenUmber,If the construction does not look

a5 a BASIC statement. what follows THEN is interpreted

Beca

s giabof the limited precision of computer representation
il eérs, computations that come out identical with
e Eme it and paper may not come out identically in the
— er. If they were tested for equality, the computer
ch Or may not think that they are equal. Therefore, avoid
- use of the equality relational when dealina with
ractional quantities. Use »>= and <= instead.

For the advanced programmer: Conditions can be tested for
truth in direct execution mode. Type only the conditional-.
BASIC will reply with TRUE or FALSE as appropriate. The
words TRUE and FALSE are also valid conditions in
themselves. Therefore, typing “NOT TRUE"® prints out
“FALSE." IF statements can often be debugged using this
capability. Restriction: the = relational is not available
for this use because it conflicts with the use of = 1in
direct assignment statements. (That is, A=B is ambiquous.)
Use an equivalent expression like NOT A<>B instead.

23

Form-
riable>
FOR <y, =<start>
; riable»>= TO <final>
NEXT ‘Vdriab19,<5t°rt’ TO <finals :sgsp <incr>)
: <incr>])

Example:
NEXT 277"

Statement

: S betwe ea

S 2 simple varifglthe FOR and the NngTEd<3XGCUt1°“ of the

Statements contai e which will pe chan ariable> should
ned in the LOOP are g:g :aCh time the

by the
amount of
the fina) the STEP value
va « As
the Roge zzzlue' the loop will - an;o:n as 2Z2Z qoes past
Statement will be executed RItSmaNE sDees

For the advanced

P Ny programmer: Loops can run

SR 61 o <3ggiggfaflt STEP is +1 and the loos°t:u::rward i

Pegative,] be getting larger every time. If Ség;wa;d

running boom ? le> gets smaller each time. on f e

sl e (Mo e; ogp exegution continues until the valu:rw;rd

Wi iopei con:ee s <F1na1>- When the 1loop is exitec?r

e I e ains this value. If the loop runs backwa d'
ntinues until <variable> becomes smaller t;;é

<final>.

E
ach of the loop specifications may be an expression which

change during execution. For example, FOR I=1 TO 100 STEP I
the values

will execute the loop 10 times with I taking on
I will Dhave

1,2, 4,8,16,32, and 64. At the exit of the loop,
similarly manipulated

the yalue 128. The <final> may be

within the loop. The value of <variable> may also be
ghanged within the loop with predictable results. Note that
it is possible to have a loop that runs both backward and
forward at different times if the sign of the STEP
expression is changed and <final> is changed so that the

loop will continue.

FOR and NEXT statements may be nested. The innermost loops
A transfer of control out of the range

are completed first.
of FOR is legal. Executing a corresponding NEXT statement
will cause the loop to be repeated regardless of the lexical

24

DATAPOINT BASIC

CQntext of the NEXT. If the loop is exhausted, execution
Will continue at the NEXT which most immediately follows the

FOR in lexical order regardless of the position of the NEXT
which caused the loop to be iterated.

Vacuous loops are possible and encouraged.

The number of active FOR loops is limitede A FOR 1loop is

active if a NEXT statement is legal for that loop. This is
true for every loop entered unless it was exited by
exhaustion or another loop utilizing the same loop variable
was entered. Therefore, problems may be encountered if many
FOR loops are exited with GO TOs. These problems can Dbe
avoided by coding new loops with the same iteration variable
as loops exited with GO TOs. This precaution is not needed
except in extraordinary programs.

Samples:
10 FOR LOOPVARIABLE=1 TO 10 STEP .5
20 PRINT LOOPVARIABLE
30 NEXT LOOPVARIABLE
will print b 1-5, 21 2-5: 3, 3¢5 ceeeee tO 10.
10 FOR B=10 TO 1

20 PRINT B
30 NEXT B

will print nothing because the loop is vacuous. See next
example.

10 FOR B=10 TO 1 STEP -1
20 PRINT B
30 NEXT B

will print out the numbers from 10 to 1 in reverse order.

25

DATAPOINT BASIC

The INPUT Statement

Form: INPUT <variable>,<variable>,. . . <variable>

Examples:

INPUT A
INPUT A,B,CCC
INPUT TRIALNUMBER

The INPUT statement is used to request information from the
operator. The cursor beqins flashing and the keyboard %S
active for input. Numbers are taken from the line typed in

by the operator and assigned sequentially to the variables
in the INPUT statement.

One line of input from the operator corresponds to one INPUT
statement. If the operator types in fewer numbers than there
are variables on the INPUT statement line, the remainder of

the variables are given the value zero. If too many numbers
are typed in, the excess is discarded.

The format of the input is free. Any preceding blanks are
ignored. Any character that cannot appear within a number
{such as blank or comma) terminates the number and the next

number begins in the position after the terminating
character.

26

DATAPOINT BASIC

The PRINT Statement

Form: PRINT [<expression>[<separator><expression>[...]]]

Examples:

PRINT "THE TABLE OF PRIME IMPLICANTS FOLLOWS:"
PRINT SIN(ANGLE1)

PRINT COUNTER;" TIMES"

PRINT "ENTER THE PRINCIPAL AMOUNT: “:

PRINT 445, (9°SQR(2)),14

PRINT “SOURCE","RESULT",X,Y,2

PRINT "Name ten Presidents of the United States”

The PRINT statement is used to display results of
Calculations and for informational purposes. 1In each case,
the PRINT statement specifies a 1list of values to be

Printed. Each value can be a string or numeric constant or

variable. If the word PRINT appears by itself, a blank line
is printed.

The separators between the values to be printed determine
the format of the ouput:

» Comma means “"next column"
: Semicolon means "no spacing”

The output page is divided up into columns 16 spaces wide.
Separating items with commas tells BASIC to move into the
next available column to output the next value. Semicolon
means no spacing--the next value will be printed adjacent to
the current value. Each PRINT statement causes one line to
be printed unless (1) the values will not all fit on one
line:; then, extra lines will be wused or (2) a comma or
semicolon terminates the statement in which case the next
PRINT statement will continue where the current one stopped.

All printing is done on the CRT of the 2200 in this form of
the PRINT statement. Five 16 column qgroups are spread
across the 80 column width of the tube. At most, 12 1lines

will be visible. Output can be suspended with the DISPLAY
key. The screen will not roll as long as it is depressed.

Other forms of the PRINT and INPUT statements are described
later.

21

N)

DATAPOINT BASIC

Ihe TAB Function

Form: TAB <column number>
or TAB (<column number>)
Examples:

PRINT TAB 4,“Name",TAB 26,"Address”

PRINT TAB 66;
PRINT 5+6;TAB(6);EXP(1.02+A)

The TAB function can be used only as a value within a PRINT
Statement. It causes the next value to be printed in the
column number specified to the TAB function. If desired,
Parentheses can be used around the column number which may
be any expression.

TAB can be used to get to particular places on the page for
formatting. The output need not be done in the same PRINT
Statement; see the second example. The last example shows
TAB being used to squeeze output together while still
leaving more spaces than a plain semicolon would have left.

No actiop is taken if the TAB position specified is to the
left of the current position of the output.

28

DATAPOINT BASIC

The READ, DATA, and RESTORE Statements

Form: READ <variable>,<variable>, . . . <variable>
DATA <value>,<value>, . . . <value>
RESTORE

Example:

READ A,B,C
DATA 10.32,-4,19E5
RESTORE

READ behaves much like the INPUT statement except that data
is retrieved from DATA statements rather than from the
keyboard. <value>s must match the type of the variable used
in reading. The RESTORE statement causes the data to be
re-read from the beginning. Expressions are not allowed in
DATA statements. Unlike INPUT, one DATA statement need not
have exactly the number of variables necessary for one READ
statement.

29

DATAPOINT BASIC

Ihe STOP and END Statements

Form: STOP (["<comment>")
END ["<comment>")
Examples:
STOPpP
STOP "ABC is out of ranqge"
END

END "ALL DONE"

The STOP and END statements are used to signal the end of
Stored program execution. Control reverts to the keyboard
operator. If a comment in gquote marks follows the STOP or
END, it will be printed with the STOP or END when
eéncountered. This provides a means of assuring the operator
of proper completion. It can also be used as a fatal error
Mmessage indicating why the program stopped early. Good form
calls for the last statement of every program to be an END
statment.

The STOP statement is equivalent to depressing the keyboard
key. Execution can be resumed with the GO command. END
performs the functions of STOP, but in addition, it forces
input or output from/to casette tapes to be completed and
the tapes used to be rewound.

For the advanced programmer: A common mistake is
interrupting a program which is writing a tape and replacing
that tape. Any command which will use the new tape will
cause BASIC to attempt to complete the o0ld tape, thereby
destroying the tape just loaded. The reason for this
phenomenon is that BASIC does not know you have replaced the
tape. The new command you have issued may very well have
applied to the tape currently loaded--in this case you
certainly want all of the output written before you start
reading it.

You can indicate to BASIC that you are about to replace the
current tapes by typing END as a direct command. This will
cause any input or output destined for the current tapes to
be completed. The new tapes can then be inserted with no
fear that deferred input or output will destroy them.

30

")

DATAPOINT BASIC

Ihe RUN Command
Form: RUN [<linenumber>)
Examples:
RUN
RUN 40

The RUN command 1is used to initialize the machine and
éxecute the stored program. If a 1linenumber is supplied,
éxecution begins with that linenumber.

For the advanced programmer: The initialization steps

pPerformed include:

Write any incomplete output on casette tapes
Rewind casette tapes before use
+ Clear any arrays previously in use

. Clear any memory of previous GOSUBs
« Clear any memory of previous FOR loops
. Cause any READ statements to read from the

first DATA statement

variables retain their values and are NOT

Note that simple
undefined. This permits parameterized

reset to zero or
execution.

31

DATAPOINT BASIC
Utility Commands

LIST (<linenumber>] or LIST

The LIs
Stateme:tsco??and prints a copy of the current stored
* <linenumber> is included, the listinq beqins

at that line. Use
. the DISPLAY ke
s Y to hold out
Creen. Use KEYBOARD to cut a LISTing short. put on the

SCRATCH

T

e::sigRATCH command causes everything BASIC knows to be

YEWOuné Ithapes were being written, they are completed and

e ot .d he workspace is left clear. The stored program

et sed. All variables are erased. This command 1is
ul to get a clean workspace for new work.

SAVE

To save the current stored program, insert a blank tape in

the front casette deck and say SAVE The

; . program will be
written to the tape. The values of variables are not written
to tape. You will probably want to remove and label the tape
immediately.

GET

To recover a stored program saved with the SAVE command, use
GET. GET will perform all the functions of SCRATCH except
for initializing cassette tapes. The current stored program
and the values and names of all variables will be erased.
The program in the front deck will be read. If the program
was previously SAVEd, the tape will rewind and BASIC will be

READY.

Sometimes the 2200 memory can become boggled with variables
and values you no longer need. BASIC, however, does not

know you no longer need them. You can clean up the memory
(so there is more room for new things!) by SAVEing the

program and GETing it backe

Complex editing can be performed on the pfoqram by SAVEing
it and using GEDIT on the resultant tape. The edited
program can be retrieved with GET.

32

DATAPOINT Basic

Advanced BASIC

The
following sections describe in detail features for the

adva
fami?iig Sff;C programmer. The user should be thoroughly
the preceding sections before proceeding.

The DIM Statement
DIM <variable>(<boundl>,<bound2>) « «
Examples:
DIM A(19)
DIM B(24,4)

DIM C(5),D(6,7),E(99)
DIM FFF(4*C),GGG(EXP(Ql))

The DIM statement is used to indicate that

l. The variable named is an array
2. The maximum size of the array

Collections of numbers can be stored under the same variable
name in BASIC. Arrays can be defined as one or two
dimensional. In a one dimensional array, numbers are stored
and referenced in the same way they would appear in a list.
To reference the third number in an array, a subscript of 3
is used. If the array name is A, the reference is A[3]. The
square brackets or parentheses are used to enclose the
subscript. In a two dimensional array, numbers are stored
and referenced the same way they would appear in a table.
The row and column which contain the desired number must be
specified. The variable A[2,5] references the number in the
second row, fifth column of array A.

The <bound> is the number of 1items that appear in a an
array. The first example above saves space for a single
dimension array named A which contains 19 items. If ¢two

numbers appear between the parentheses, then these are the
maximum numbers of rows and columns. In the example above,

B is dimensioned as an array with 24 rows and 4 columns.

For the advanced programmer: The value of the <bound>s can
be any expression evaluable at the time the DIM is
performed. This includes expressions which contain the

33

CE

DATAPOINT BASIC

res
€sults of previous calculations.

:i::?edi::nfioned variable which has previously contained a
viCé‘V;rsaa ar value cannot be redefined as an array and
the pro « This occurs because BASIC detects an error when

grammer uses the same name for what must be different

a .
t;ge;ndepende“t variables (since they are of different

g Yariable which has been DIMed capnot be DIMed again until
Sygfg bProdram is used or a RUN command Jis aiven. Some
ms do not allow dimensioning of variables by
expressions and therefore will iqnore DIM statements in
éxecution loops. In Datapoint BASIC, a re-execution of a DIM
Statement in a program will cause a subscript error. If this
Occurs, it must then be moved to a position in the program
where it will be executed only once. If, in direct execution
mpde it is necessary to re-DIM a variable, the RUN command
Wlth a non-existent 1line number for an argument will
re-initialize array storage and allow new DIM statements.

The message “No room" occurs when there is no space in the
2200 memory to allocate space for an array or program.
Occasionally, enough space can be recovered by a SAVE and
GET to allow execution. Sometimes, removing other arrays
from array space by executing the RUN command to a
non-existent line will give enough space to allocate the
current array.

The DIM statement is legal as a direct execution statement.
To go to stored execution, use GO subsequently instead of
RUN since RUN deletes DIM storage.

34

DATAPOINT BASIC

Use of Arrave

A subscripted variable can appear any place where a variable
can appear except as the index for a FOR statement. The
ordinary parentheses (and) can be used for [and] on
input. Here are some examples:

10 DIM A(20),B(4,5)

20 LET A(2)=10

30 DIM C(A(2)=-1)

40 A(A(2))=A(2)

50 IF A(2) <> A(SQR(100)) THEN PRINT “Oops!"”
€60 GO TO (A(2)*7)

70 B(1,1)=5

80 FOR I=C(1) TO B(1l,1)

90 C(1+4I)=B(I,I)+I

100 NEXT I

110 PRINT A(2),B(1,1),C(6)

Use of Strinas

The preceding sections have discussed the use of BASIC on
numeric data. This section describes the string handling
capabilities of Datapoint BASIC. A string of characters can
represent names, titles or any other kind of information.

A number that does not change 1is called a constant. A
string that does not change is a string constant. A string
constant is written in BASIC by enclosing it in double quote

marks.

PRINT "THIS IS A CONSTANT STRING"

The PRINT statement above prints the constant string
consisting of the 25 characters beginning with the T (of
THIS) and ending with the G (of STRING).

Strings can also be used as the values for variables. To
distinguish between numeric and string variables. the names
for string variables end in $. The length of a string must
always be given in a DIM statement before the string can be
used so that BASIC knows how much room to reserve for it.

10 DIM MESSAGES (80)
20 MESSAGES="NOW IS THE TIME FOR STRINGS"

35

DATAPOINT BASIC

30 PRINT MESSAGES

namely, NOW IS THE

Will print out the value of MESSAGES,
must always be

TIME FOR STRINGS. Note that while arrays
subscripted in use, strings need not be subscripted.

Strings can be used in the following statements:

« LET

« INPUT

« PRINT

. IF .. THEN
« DATA

. READ

The lenqth of a string is the number given to {its DIM
statement. On input and output, strings of no more than 80
characters can be used. On output, all of the string will be
written unless a 13 (new line) or 3 (end of this output) is
written into some character position of the string.

The individual characters of a string can be used by
For

subscripting the string just as arrays are subscripted.
example, to print the seventh character of string S$, PRINT

S$(7] could be used. Similarly, to replace the 9th character
of SS with a star, use S$[9]="*".

A string is blanked out when DIMed. On a string assignment,
excess characters are dropped and extra positions are filled

with blanks.

A single character of a string, when subscripted, can act as
a real number in calculations. The number will be the value

of the character in the ASCII character set. Blank is 32.
The letter A is 65. Consult the ASCII chart (Appendix B) for

others. Pretend that you want to place the 1Ith character
from A in S5$(1). Then, use

S$(1)=65+1

Examples:

10 DIM ANSWERS(3),NAMES(10)
20 PRINT "This program prints backwards."
30 PRINT “Type in the name: ";

40 INPUT NAMES
50 FOR I=10 TO 1 STEP -1

36

DATAPOINT BASIC

60 PRINT NAMESI(I):

70 NEXT 1

80 PRINT " Do you want to try another? “;

90 INPUT ANSWERS

100 IF ANSWERS="YES" THEN 30

110 IF ANSWERS="NO" THEN END "Wasn't that fun?"
120 PRINT "Please answer YES or NO."

130 GO TO 80

140 END

10 REM FOUR LETTER WORD DETECTOR

20 DIM S$(10),FOURS (4) ,NEWFOURS (10)

30 PRINT "I detect four letter words."

40 PRINT “Try typing in a word"®

50 INPUT S$

60 FOURS=SS

70 NEWFOUR$=FOURS

80 IF NEWFOURS$=SS AND (S$(4)<>" ") THEN 110
90 PRINT “That’s fine. Feed me another.”
100 GO TO 40

110 PRINT "You typed a four letter word!"
120 FOR I=1 to 100

130 BEEP

140 NEXT I

150 END "I QUIT I!!"™

317

DATAPOINT BASIC

Input and Qutput

Datapoint BASIC allows input and output from several

devices. They have been given numbers for use in describina
them to BASIC:

0 Keyboard and display
1 Rear casette deck

2 Front casette deck

4 Printer

The input and output statements in BASIC can accept a

specifier of the form #<number> to indicate the input/output
device desired.

Forms: PRINT #<number>,<expression>. « « « « o
. INPUT #<number>,<variable> « ¢+ « ¢ o =
LIST #<number>, (<linenumber>]
SAVE #<number>,(<linenumber>]
GET #<number>

Note: SAVE and GET #0 uses front casette deck instead of the
keyboard/display.

The <number> can be any valid BASIC numeric expression.
Input from the printer is, of course, illegal. A handy
technique is to use the variable Q0 to be the output device.
Then, during debugging, Q=0 will direct output to the
display. During production, Q can be assigned the number of
the proper 1/0 device.

A remote, local or servo printer is automatically configured
at system load time. Unused printer support area |{is
automatically added to the user’s work area. A remote
printer is assumed to be 30 c¢ps through the R5=-232

connection of the 2200-400. When wusing a 1local or servo
printer, make sure it is ON and ON-LINE during load time.

38

DATAPOINT Basic

The BEEp

for siqnafti;e::nt causes the 2200 to beep. This 1is useful
errors or the nezdogggator' Typical uses include sianaling
Computation. operator intervention after a long

Form: CLICK
Example: cLICK

causes the 2200 to click. This is useful

The CLIck statement
in situations where the beep

for signaling the operator
would be annoying.

Form: APP [#<number>]
Example: APP

The APP command is used to indicate that the contents of a
Cassette tape are to be APPended to the current program. If
the I/0 unit number is omitted or zero, the front casette

deck is assumed.

Form: END #<number>
Example: END #2

The END statment with an I/0 device number causes the named
cassette unit to be re-intialized. This 1is useful for
changing a wnit from reading to writing, or vice-versa. For
example, assume that an intermediate tape is being written-
It should be closed and re-opened for reading. END #2 will
close out the front tape and allow it to be read from the
beginning without stopping the program.

execution. END without

does not stop
and in addition, stops

END #<number>
numbers

#<number> implies all
execution.

IF EOF #<number> THEN <linenumber>

Form:
IF EOF #1 THEN 17

Example:

39

DATAPOINT BASIC

T .

w:is special form of the IF statement is used to determine
. en_an INPUT statement has encountered an End Of File on a
pecified casette tape unit. Note: IF EOF 4 is not a trap

and must be executed immediately after the INPUT statement
to test the EOF condition.

The following program reads the casette tape in the front
deck and prints it on device Q.

10 PRINT "List a GEDIT tape on device Q"
20 DIM S$(80)

30 N=0

40 PRINT “PLACE TAPE TO BE LISTED IN FRONT DECK."
50 PRINT *"List on Display or Printer? *;
60 Q=-1

70 INPUT SS

80 IF S$="D" THEN Q=0

90 IF S$="P" THEN Q=4

100 IF Q<0 THEN 50

110 INPUT #2,S$

120 IF EOF #2 THEN 200

130 N=N+1

140 PRINT #Q,SS

150 GO TO 110

200 PRINT "- = = = - - - -]
210 PRINT “End of file after ":;N:" records.
220 END

40

DATAPO 1y BASIC
Elle Hints

point BASIC are written so that they

and programs 2
EDIT (tran can be prepared using CTOs GEDITheggfoggé

sfer
to and from disk with SIN and SOUT). Files in

Ormat are
Software s also accepted b
Ormat-—asysggT:;dnumbers and Strinq: a?élkegghf: gztapoint
Characters. Therefore, output gansagg

Written
as
strings and reaq back as numbers and vice versa

Input a
nd output can be format using BASIC strings since the

’

following will handle it:

10 DIM FIRSTNAMES(IO).LASTNAME$(10)
20 INPUT #1,FIRSTNAMES, LASTNAMES

tQTfric and string fields can be mixed. The numeric field
némb end with the f1r§t character that cannot belong in the

er. The string field will end after getting enough
characters to fill the string.

Do NOT read and then write, or write and then read the same
Ccasette deck without an END #<number> statement intervening.

This can cause some tricky disasters.

Remove cassette tapes when not in use. Punch out the

read-only tab on the BASIC cassette. It is too easy to leave
tapes in and then accidentally type something that tries to

write on the tape.

1/0 to tapes not loaded causes the machine to hana. Use the
keyboard key to recover. Then type END #<number> for the
unit causing problems. This will probably hana again.
Repeat the keyboard and END sedquence until the mychine
responds READY. At this point, the machine has finally
given up trying to use the empty deck.

41

DATAPOINT BASIC
Formatting Display Ooutput

The 2200 display can be randomly accessed and maneuvered

through BASIC. To do so, special code numbers in strinas
direct special actions.

08 - A new horizontal position follows
11 - A new vertical position follows
17 - Erase to the end of the screen

18 - Erase to the end of the line

For example, the following will clear the screen and
position a message in the middle:

10 DIM CLRS(S)

20 CLRS(1)=11; CLRS(2)=0; CLRS(3)=8; CLRS(4)=0
30 CLRS (5)=17

40 PRINT CLRS

50 CLRS(2)=5; CLRS(4)=30

60 PRINT CLR$:"Da tapoint Bas
70 GO TO 70

Formatting Servo Printer Qutput

Special code numbers in strings allow pagina and over
printing on the servo printer:

12 - Page Eject
14 - Carriage return and suppress line feed

For example, the following will overprint one line and page
eject:

10 DIM CRS$(1),PGS(1)
20 CRS(1)=14;PGS(1)=12

30 PRINT #4,“ABCDEFGH";CRS;"01234567";PGS
40 END

42

e

o

DATAPOINT BASIC

Plotting with Servo printers

The serw
Using th: grénﬁei can be micro positioned for plotting by
BASIc. Thep ;iz co-ordinate positioning feature of ‘2200
POsitioning ¢t ro Co-ordinate feature allows direct
be fore prigt'o any of 589,824 micro positions on a pa
message “Wlinq. To use this feature reply;: “y" +to ptz:
Pes.. éuri L YOU BE MICRO PLOTTING?". This will 1
Printe ng initialization if your 2200 has a s::vg
I attached and ready. Any other reply will delete the

feature and add 7
t
Space. he micro plotting area to the users work

Mi i +1 i
1Cro positioning co-ordinates are defined as follows:

10 DIM AS$(5)

20 AS(1)=15

30 AS(2)=HORIZ/256
40 AS(3)=HORIZ

50 AS(4)=VERT/256
60 AS(5)=VERT

Statement 10 defines a five character string array that will
dirgct the servo printer to position to a micro co-ordinate.
Horizontal and vertical co-ordinates must be in the range 0
Fodf768. AS(l) contains the special function code 15 that
lindicates to the servo rinter drive -

follow. AS$(2) and AS(3) cgntain the horizo:::f gg-g:giggggf
AS(4) and AS(5) contain the vertical co-ordinate. Statement
30 causes BASIC to take the floating point variable “HORIZ"
and divide it by 256, convert the result to an integer and
store the result in AS$(2). Statement 40 causes BASIC to take
the same variable and convert it to an integer and store the
least significant byte (value 0-255) in AS(3). Statements 50

and 60 store the vertical co-ordinate.

Micro positioning moves the print carriage and printer
platen simultaneously along the most direct path to reach
the desired position. Horizontal co-ordinate 0, vertical
co-ordinate 0 is the position of the carriage and platen
following the last carriage return executed. When generating
co-ordinates, consideration should be given to the fact that

five horizontal micro increments equal four vertical micro
increments on a servo printere. The printer can position to
60 micro positions per inch horizontally and 48 micre

positions per inch vertically.

43

e

DATAPOINT BASIC
For Example:

10 DIM SS(5)

20 S$(1)=15;TWOPI=6.28319;1=2.32711E-2
30 FOR A=I TO TWOPI STEP I

40 X=SIN(4*A)

50 H=160+100*(COS A)*X;V=80+80*(SIN A)*X
60 SS$(2)=H/256:;SS(3)=H

70 S$(4)=V/256;SS(5)=V

80 PRINT #4,SS:"*";

90 NEXT A

100 END

RUN the program and you get this:

*] a
" ®] :
* - * a
* ” * -
& W& &
&]
A
L PN L - * & ®kk
*
a_ % LY
‘*. L2] & *

*s, et o oax," ot
e, *hos xt an
o, Lat ak*

L | t.}at :

H
. * *
at F o § *

% * % .,
¥ s 8 LY "
x* LT B L ®,
l‘ *

* k& 2 T
an® a * e
&

T * * . *Haas
* 2 &

a * A &

% * & .

" 5 A *

: ® * :

* &

L]
L el

Co-ordinate positioning strings must not be output to any
device except the servo printer or the result will be
unpredictable! All five elements of the stringa must be
output as a single element or loss of sychronization will
occur!

44

L)

DATAPOINT BASIC

Proaram Chaining

If a BASIC program is too large to be executed at once. it
may be possible to break it into smaller parts that run
sequentially after one another. If necessary, data can be
Passed from one program to the other using cassette tape for
intermediate storage.

Blank lines and the immediate command "GO" must be inserted
using CTOS GEDIT or DOS EDIT (transfer to and from disk with

SIN and souT).

Example:

10 PRINT "FIRST SEGMENT"
20 GET

(blank line)

10 PRINT "SECOND SEGMENT*
20 GET

GO

10 PRINT “THIRD SEGMENT"
20 END

GO

Place the cassette containing the edited program in the
front deck and type GET. The first segment will be read in,
stopping when the blank 1line is read. READY will be
displaved. Type GO (not RUN which rewinds!) and the first
segment will be executed. When line 20 is executed, the next
seament will be read in, scratching the segment executing
the GET. The GO at the end of the second and third segments
will cause immediate execution as soon as they are read in.

You can also chain to code generated by your program. For
example:

10 DIM NS(4)

20 PRINT "ENTER N: “;

30 INPUT NS$

40 PRINT #2,%"10 A=SIN ("3;NS;")4COS (";NS:"™)“
50 PRINT #2,%20 PRINT A

60 PRINT #2,"30 END"

70 PRINT #2,"GO"

80 END #2

90 GET

45

>

DATAPOINT BASIC

the
deck

UN or GO is added to
the end of the program
1T, ;?e program will be run immediately upon
nge. If the program is segmented, GO
prevent rewinding the program tape!

If the word R
tape with GED
conclusion of loa
sShould bpe used to

Example of self-starting program:

10 PRINT “THIS PROGRAM STARTED ITSELF WHEN"

20 PRINT "IT WAS RETRIEVED FROM TAPE."

30 END

RUN

as closely as
have comments

be checked
the last

All user parameters should
Any STOP or END statements should
an END 1is

possible.
indicating disposition. Be sure that
Give any directions possible.

statement in the program.
Following 1is

Sel f-destructing programs are also possible.

an example:
10 PRINT “PROGRAM SELF-DESTRUCTS IN 10 SEC."

20 FOR I=1 TO 500

30 BEEP
40 NEXT I
50 SCRATCH

46

e

DATAPOINT BASIC

Optimizing Usage of Work Space

The program capacity of Datapoint BASIC can be greatly
increased by using a few simple space saving techniocues when
generating programs.

Use multiple statements per line whenever possible.
Avoid use of REM statements.

Keep variable names short.

Use string arrays for storage of small positive integers
(0-255).

Use GO or GOTO instead of GO TO.

Use "IF <condition> THEN <BASIC statement>" form of IF
statement.

Keep message strings in PRINT statements as short as
possible.

Do not use the optional word "LET" in assignment statements.

47

&

~e

DATAPOINT BASIC

APPENDIX A
Instruction Summary

Standard BASIC: Page
LET <varjable>=<expression> 17
GOTO <linenumber> 20
GOSUB ([<linenumber>] 21
RETURN 21
IF <condition> THEN <linenumber> 22
FOR <variable>=<start> TO <final> ([STEP <incr>] 24
NEXT <variable> 24
STOP ["<comment>"“] 30
END [“<comment>"] 30
REM [<any sequence of characters>) 16
DIM <variable>(<bound>) « « « + o 32
INPUT <variable>,<variable>,. « . 26
PRINT [<expression>[<separator><expression>(...]]] 27
READ <variable>,<variable>, . . . <variable> 29
DATA <value>,<value>, . . . <variable> 29
RESTORE 23
RUN 31
LIST [<linenumber>] 32
SCRATCH 32
SAVE 32
GET 32

Datapoint Extentions:
INPUT #<number>,<expression> « « « o+ o« 38
PRINT §<number>,<expression> « « « o = 38
BEEP 39
CLICK 39
LIST #<number>, [<linenumber>) 38
SAVE #<number>, [<linenumber>] 38
GET #<number> 38
APP [#<number>) gg

END [#<number>]

48

Lt

DATAPOINT BASIC

N XECCHVUVOTODUOWOZINXRURITIOmMME@MO N>

65
66
67
68
69

71
12
73
74

76
77
78
79
80
81
82
83
84

86
87
88
89
90

Numeric values of ASCII Charxacters

NN X ESCCcaNNOQTOII XL ITambdDoao oo

APPENDIX B

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

49

Blan

I 4+ e " P PUIE 2= XN ODJOUVDEWNO

\.

48
49
50
51
52
53
54
55
56
57
32
33
34
35
36
31
38
39
40
41
42
43
44
45
46
47

Vo= Lm0 VWV U A S e

Vo — A

- g

DATAPOINT BASIC

APPENDIX C

Error Messages

NO SUCH LINE ¢

NO ROOM

LINE ¥ > 38399

“ " UNMATCHED
DICTIONARY FULL
MISSING OPERATOR
() TOO DEEP

() UNMATCHED

I1/0 ERROR
UNDEFINED VARIABLE
STRING ERROR
SUBSCRIPTING ERROR
GOSUB/RETURN ERROR
NO MORE DATA

[] UNMACHED

STACK UNDERFLOW
TOO COMPLICATED
BAD STATEMENT
CAN‘T OUTPUT THAT
FOR/NEXT ERROR
OVERFLOW

DIVIDE BY ZERO
ARITHMETIC ERROR

50

