
0
I

• 1'

.c
~O

Q_
Q
a

0

1i .
•

BASIC LANGUAGE
BASIC 2.1

AUGUST 6, 1973

Rf~IL t
l~ F (}_wfu_

COPYRIGHT '<:) 1973 BY DATAPOINT CORPORATION

DATAPOINT BASIC

USERS GUIDE

DATAPOINT CORPORATION

August 6, 1973

'

TABLE OF CONTENTS

Datapoint BASIC Language Features

ltanual Conventions

Introduction to Datapoint BASIC

Modes

Constants

Variables

Implementation Limits on Variables

Statement Format

Remarks

REM

Assignment

LET

Arithmetic Expressions

Functions

INT
LOG
EXP
SQR
RfJD
SIN
cos
TAN
ATN

The GO TO Statement

The GOSUB and RETURN Statements

The IF Statement

The FOR and NEXT Statements

The INPUT Statement

The PRINT Statement

PAGE

1

2

3

11

12

13

14

1~

16

16

17

17

18

19

19
19
19
19
19
19
19
19
19

20

21

22

24

26

27

•

The Tl\B Function

The READ, DATA, and RESTORE Statements

The STOP and END Statements

The RUN Command

Utility Commands

LIST
SCRATCH
SAVE
GET

Advanced BASIC

The DIM Statement

Use of Arrays

Use of Strings

Input and Output

PRINT #
INPUT i
LIST #
SAVE#
GET #
DEEP
CLICK
APP#
END j
IF EOF #

File Hints

Formatting Display Output

Formatting Servo Printer Output

Plotting with Servo Printers

Program Chaining

Hints on Writing Packages

Optimizing Usaqe of Work Space

PAGE

28

29

30

31

32

32
32
32
32

33

33

38

38
38
38
38
38
39
39
39
39
39

40

42

42

43

45

46

47

'
..

APPENDIX A (Instruction Summary)

APPENDIX 8 (Numeric Values of ASCII Characters)

APPENDIX C (Error Messages)

PAGE

48

49

~o

•

DATAPOI NT BASIC

Datapoint BASIC Lanqua qe Features

Oa t aPoint Corpora t i on BASIC is a fully i nter active alqe bra ic
l anq ua qe tor the Datapoint 2200 . While it re t ains most of
t he l anq uage, simplicity and ease of use of the standard
Dar tmouth DASIC, it has extensions to take anv~ntaie of the
un iq1~ qualities of ihe Da t apoint . Such extensions prnvid~ a
complet e inteqration of Datapoint BASIC with all other
Datapoint systems ~nd o f fe r s the us~r not only an attractive
independent BASIC system, but a power f ul add i t ional tool t o
enha nce exist inq Datapoint systems •

Features i ncl ude :

* Arithmeti c operat i ons(+, -, *, /, -,

* Arithme tic functions (EXP, LOG, SOR, I NT, R~ D)

* Transcendental funct i ons (SI N, cos, TAN , ATN)

* Lo~ical operators (<, =, >, <-=, <>, >=, #)

* Cha i ninq and ke yboard controlled execution

* cassette tape input/output in standard Datapoint
file format

* Local, remote or servo printer support confiqured
automatic a 11 y

* Unused printer support area released and added
to user's work area

* Desk calculator execution of expressions

* Built- in debugging aids

* Complete error messages

* Workspace save and restore on cassette tapes in
compatible Datatapoint file format

* Lonq variable names to improve readability

* Multiple statements per line

* Strinq and string array processinq

* Co-ordinate micro Po s itioning of servo printer
for plottim

1

DATAPOINT BASIC

Manual conventions

To help make this manual readable, some conventions are
necessary. Corner brackets--< and >--will be placed around
words which describe a class of items that should stand in
the Place of of the corner-bracketed item. For Pxample, the
manual will put the leqend <diqit> in a place where you, the
user, can type in any digit.

Square brackets--[and)--will be used to enclose optional
items. For example , if a digit may optionally be included,
the notation would be [<digit>). As another example, if the
word 'TO' may optionally be included, t he notation is [TO).

2

'

-

DATAPO I NT BASIC

An Introduction .t.2 Datapoint BASIC

Since some of the material that follows is rather abstract w· h lt out some framework, this section will take you through
some simple examples. Experienced BASIC programmers may wish
to skip this section. Because this section is a hand-holding
learn-through-doing text, you will find that it is best read
Sittinq at a 2200.

Place a BASIC tape in the rear deck of the machine and
depress the RESTART key on the upper-rightmost part of the
2200 keyboard. This causes the 2200 to load the proqram that
makes BASIC available. It includes the instructions
necessary to tell the computer how to calculate all of the
arithmetic you may ever use. Besides that are routines that
Will allow you to take the sine, cosine, tangent,
arctanqent, natural logarithm, and exponential of any
number. The remainder of the tape gives the computer
instructions on how to execute the rest of the BASIC
language described in the manual.

When the tape is finished readinq, it prints out the version
of BASIC that you have loaded. Any messages to remind you
of release changes are also printed here. The next to the
last line is a reminder that you are starting out with a
clear workspace--that is, a workspac~ in the computer that
contains no variables or programs. Remove the BASIC tape
fran the rear deck at this time.

The message READY indicates that BASIC is ready to accept a
new command. In addition, the cursor, a little block of
light that flashes on and off, shows itself at the bottom of
the screen. The presence of the cursor is your cue that
BASIC is waiting for you to type something. When it says
READY and flashes the cursor, it means that it wants you to
type some command to the BASIC system.

~

Try typing

217*.06

and finish by depressinq the ENTER key (the largest key on
the 2200). BASIC interprets this as a command to calcul~te
217 multiplied by 0.06 and print the rP.sult• The anRwar can
be interpreted as the interest on S217 at 61 for one year.
This is an example of the desk calculator mode of BASIC.
Any arithmetic expression typed in as a BASIC command will
print the evaluated answer.

3

-

DA'i'APOI ~T BASIC

If Yo u followed the above instructions, BASIC will
Printed READY again and is flashing t he cursor•
demonstrate the natural logarithm f unc tion, try typin7

LOG 10

to Print out the value of the natural logarit h~ of ten.

The operations and functions include:

+ Addition
- Subtraction
* Multiplication
/ Division

Raise to a power
SIN Sine
cos Cosine
TAt.l Tangent
ATN Arctangent
INT Largest integer
E XP Exponentia 1
LOG Natural logarithm
SQR Square root
RND Random number

have
:-o

Values can be •remembered• by giving those values to
variables. A variable is a named entity whose value can be a
number. A variable can be given a value by typing, for
instance,

LET PI-=3.1415927

to give the variable named •pr• the value J.1415927.
variable name PI can now appear anyplace that numbers
appear. Try

2*PI

to print out the value of two Pi•
not have J.1415927 as its value.

LF:T PI -=-7

A variable named PI
Do

The
could

need

and the variable named PI has taken on the value -7. To
prove it,

PI

should print out -7.

4

...

DATAPOINT BASIC

Instructions to a~src can 1
n a so be laid out as programs. Type

1 0 P * (1 + R /N) .. N

a nd
You have stored an instruction that calculates

compounded interest. P is the name of a variable
representing the principal, R is the name of a variable
representing the yearly interest rate, and N is the name of
a variable that tel 1 s how many times a year the interest is
compounded. The number 10 and the space at the beginning of
the line tell BASIC that this is statement number ten. The
actual number in this case is unimportant, but with many
Statements, the statement number is used to tell the order
in Which they will be done. Note that BASIC did not say
READY. This happens because BASIC is expecting another line
of the program and it would be a nuisance to have the READY
messages interspersed. Never fear, because commands are
still legal•

You can now set up the values of the variables to be used.

LET P-=187
LET Rc.0575
LET N=4

for a $187 principal at 5 3/4\
quarterly. You can now type

P * (1 +R/N) -N

and get the answer. But,
progra~, you need only type

RUN

because

interest compounded

you have stored that

d th 2200 will go through all the stored
an e is the onlY statement,

statements in
and therefore,

in with that numerical order. Ten i u typed
it will evaluate the express on yo
number in front of it•

Wha t the result would To see
be for 6 \ interest,

change R by typing

LET R=.06

new result out with
and gettin9 the

RUN
trY changing

you might want to as well•
d ing f re quencY compoun

5

the principal

merely

or the

I

"

•

DATAPO I NT BASIC

At thi s point yo u should feel in command of the desk
c al cul ator por tion of BASIC. And, you have written a
one-l ine pr ogram t hat wa s stored. Prepare to start a whole
new program by typinq

SC RATC H

This erase s the current program and variables and leaves you
With a cl ear workspace. Into this clear workspace we will
Pl ace a prog r am that computes the time necessary for an
ohj ect t ha t falls off a desk to hit the floor•

10 REM COMPUTE TIME NECESSARY FOR AN OBJECT FALLING
20 REM OFF A DESK TO HIT THE FLOOR

These lines, 10 and 20, are REMark statements that are used
to docum~nt the program. A statement cannot be lon~er than
one line, so the comment had to be divided into the t~o
lines 10 and 20.

30 PRINT "THIS PROGRAM CALCULTES THE ELAPSED TIME"

Line JO is a direction to print, when the procrral"I is RUN,
the phrase betwen the double quote marks will be printed.
Unfortunately, CALCULATES was misspelled. This, and other
errors are corrected by re-typing the line.

30 PRINT •THIS PROGRAM CALCULATES THE ELAPSED TIME•
40 PRINT •BETWEEN BEING PUSHED OFF A DESK ANON
50 PRINT •LANDING ON THE FLOOR FOR A HEAVY OBJECT.•

Note that three separate PRINT statements were necessary to
type out the entire messaqe. If you make mistakes, re-type
the line in error. You can delete an entire line by typing
only the line number.

60 PRINT

This prints only a blank line.

70 PRINT •wHAT IS HEIGHT OF THE DESK (FEET) ?•:

This PRINT statement will type out the material between thP.
double quotes (including the parentheses and question mark)
when it is run. After it has done so, it will leave the
cursor positioned at the end of the statement: this is the
meaning of the semicolon at the end.

80 INPUT HEIGHT

This statement, when RUN, will start flashing the cursor and
wait for you to type in a value for the variable named
HEIGHT. The value you type in will become the value of the

6

•

•

' .

DATAPOINT BASIC

vari~ble.

90 LET TIME• SOR (2*HEIGHT / 32.2)

This LET statement will co~pute a value for the variable
named TIME. It will arrive at that value by multiplying the
height in feet by 2, dividing by 32.2 (the qravitational
constant in ft/sec2) and then taking the square root of the
entire quantity enclosed by the parentheses. Now there are
two different variables -- HEIGHT and TIME •

100 PRINT TIME:• SECONDS•

Line 100 will print out the value of the variable time and
then the word SECONDS right next to it• The value of the
variable named TIME is printed instead of the letters T,I,M,
and E because there are no double quote marks around it•
SECONDS, on the other hand, is printed with those letters
because it does have double quote marks around it• The
semicolon in the middle says to print them next to each
other.

110 END

The END statement identifies the end of the program. You can
get a listing of everything stored by typing

LIST

Because that line does not have a line number in front of
it, it is executed immediately producing a listing of the
stored statements that had line numbers in front of them.
Note that the program is listed in terms of increasinq line
numbers even if you had to ~o back and correct some
statements.

It should appear like:

10 REM COMPUTE TIME NECESSARY FOR AN OBJECT FALLING
20 REM OFF A DESK TO HIT THE FLOOR
30 PRINT •THIS PROGRAM CALCULATES THE ELAPSED TIME•
40 PRINT •BETWEEN BEING PUSHED OFF A DESK AND•
50 PRINT •LANDING ON THE FLOOR FOR A HEAVY OBJECT.•
60 PRINT
70 PRINT •wHAT IS HEIGHT OF THE DESK (FEET) ?•;
80 INPUT HEIGHT
90 LET TIME•SQR(2*HEIGHT/32.2)
100 PRINT TIME;• SECONDS•
110 END

This program is now ready to go. To start it, type

7

•

•

DATAPOINT BASIC

RUN

If everyt hi nq i s in order, it will print out the t hree lines
~f in~rod uct ion, a bl ank line, and then ask t he que s tion of
ow hi gh t he desk i s . As a good test, try

16.1

a s the r esponse because that is the heiqht
s~ould take a full second. After printing the
Wil l show you that the execution ended at the
and that i t is READY. All of this is normal.
va riables are still available for inspection.

HEIGHT

at which it
answer, BASIC

END statement
The values of
Type

and BASIC will reply with 16.1 showing that 16.1 is the
value of the variable named HEIGHT·

This program can be used to find out the fraction of a
second needed for a penny to fall off your desk. Measure
(or guess) the height of your desk in feet. RUN the program
and enter the height. The answer is how long it would take
for a penny, for example, to fall off your desk and hit the
floor.

The program can be made more convenient to use with a few
changes in the input and output fomats. For example, it
would be much more convenient to specify the desk heiqht in
inches. We can do this with additional statements:

80 INPUT HEIGHTININCHES
85 LET HEIGHT• HEIGHTININCHES / 12

Note that you can put in spaces between parts of the
statement (such as before and after the replacement siqn (s)
and the division symbol (/)). These spaces are removed when
BASIC reduces it to the most compact form possible for
storage in the 2200. You cannot, however, put spaces in a
variable name like HEIGHT IN INCHES. Fix up the query
statement with

70 PRINT •wHAT IS HEIGHT OF THE DESK (INCHES)

Try RUNing the program with this new change.

~-. . ,

Because (for most desks) the time taken is a small fraction
of a second, you might prefer to have it expressed in
milliseconds (thousandths of a second).

8

•
•

•

DATAPO I NT BASIC

100 PRINT INT(TIME*l000):• MILLISECONDS•

This sta t ement will (1) convert the TIME to milliseconds by
mult i plying by 1000, (2) use the INT function to drop the
fractional part left after multiplication -- this will leave
an integer and hence the name INT, and (3) print out the
word MILLISECONDS after the number of milliseconds. Note
that the PRINT statement can print the result of a
calculation •

LIST

Use LIST to list this version of the program. Note that the
re-typed lines have been replaced. Try

RUN

to see how this version works for a penny off your desk. If
you wish, you can save this program on a cassette tape for
later use. Type

SAVE

With a casette tape in the front deck and BASIC
the program there for you. At some later time,
type GET to retrieve it into a clear workspace.

will save
you could

It there were several desks for which you needed this
calculation, it might be handy to have a table of the
results for common desk heiqhts. One way to do this would be
to RUN the program over and over again and write down the
results. You can program BASIC to make the program work
over and over again. After the last statement of the
algorithm, you can place

105 GO TO 70

and the program will go back to line 70 after rrintinq out
each answer. Therefore you can just type in desk heights and
writing down answers without typin~ RUN over and over again.
Try this out by typing

RUN

and running the program. When you do want to stop the
program, the KEYBOARD key on the far riqht will do the job•
Hold it down tmtil the Datapoint says •interrupted.• This
key will always get things back to the place where you can
type in a command on the keyboard.

9

•

..

DATAPOINT BASIC

The technique j u s t u d · 11

time c'\s th b s e WJ. type out a s many v a lues for t he
c e n um e r o f he ights You type in. S houl d n 't a omputer be Oh le to make on entire tabl e ? Yes ,

70 FOR HEIGHTININCHES • 30 TO 40 8 0

105 NEXT HEIGHTININCHES

Typi n g 8 0 Without any inform•tion deletes line 80 which used
t o • s k for the input. The other two lines enclose on area
Of t he Bl\s IC Progr •m Which Will be repeated for Va Jue S Of
HEIGHT ININCHES from 30 to 40. The NEXT HEIGHTININCHES
sta tement indicates thot it is time for BASIC to repeat the
s ect i on With the next Value for ffEIGffTININCHES, Run this by t y r,i n<J

RUN

The re is only one problem remaining.
a nswe r goes with which value of the
fix e d With

We do not know which
height. This can be

100 PRINT HEIGHTININCHES,INT(TlME*lOOO)

'-'hich will print the height and the time
line When executed. The comma between
indicates that they should be placed in two
columns can be labeled with

to~ether on one
the two values

columns. The

65 PRINT •ttEIGHT•,•TIME•
67 PRINT ·rNCHEs•,•MsEcs·

which will put labels at the top of the columns.
version with

RUN

Try this

would you like a copy
statements to refer to

Just change the on paper?
4 the printer, device number •

PRINT

65 PRINT 14,.HEIGHT•,•TIME•
• Es• •MsEcs•

67 PRINT 14, INCH TI~INCHES,INT(TIME*lOOO) 100 PRINT 14,HEIGH
RUN

can also get a copy of the the older version program with LIST t4. oit i~~
You he tape you SAVEd overwrite it, if
still have t the front deck, you cant the r,rinter must
proqram still t i~in(J SAVE again . Note tha) durinq initial
you wish, by Y • f a Local Printer the automatic ON (and ON-LINE 1 this is when be BASIC since
loading of f printer type is made. determination o

10

•

•

•

•

•

DATAPOINT BASIC

Command mod .
further to :o -_This mode is Utilized when BASIC has nothing
command fran tt! order to accommodate the last command. A
calculator comman~ser (such as RUN, LIST, SCRATCH, or a desk
This mode is indic~t~ ~equ~ed to perform more useful work •
cursor. Althou Y t word READY and a flashing
command mode atf!r e:~:;pdtoies not reply READY, it is also in

ng a statement to be stored •

Input mode - This mode occurs during an INPUT statement when
~~;~es ~or variables are required of the operator. The

or is flashing. It is the responsibility of the stored
Program to indicate what information should be entered.

Running mode -
BASIC leaves
inactive.

During actual execution of
the cursor turned off and

instructions,
the keyboard

Depressing the KEYBOARD key at any time will cause BASIC to
re-enter command mode regardless of the current mode.
Therefore, depressing KEYBOARD can be used to terminate
input or to regain control from a runaway program. Hold
down the key until BASIC responds with •Interrupted.• If
BASIC was not in command mode already, the last statement
executed in the current program is displayed. The program
can be continued by use of the GO command referencing the
current line (in the case of I/0 statements) or the next
line (in the case of all computational statements).

Holding down the DISPLAY key at any time will prevent the
screen from •rolling up• and losing the tor line •

11

•

1

..

..

•

DATAPOINT BASIC

constants

Constants are values that do not change. There are two
varieties: (1) Numeric constants whose values are numbers
and (2) String constants whose values are •strings• of
characters.

Examples of numeric constants:

1 has the value +1.0
1.0 has the value +1.0
-1 has the value -1.0
-1.01 has the value -1.01
2345 has the val ue 2, 3 4 5.

Commas are never used in numbers
12E2 has the value 1, 2 0 o.

The Eis read •times 10 to the•
l•2E6 has the value 1,200,000
lE-2 has the value O • O 1 •
-2. 3E-4 has the value -0.00023.

String constants: (Note: String constants
described to the system in quotes)

•R• has as its value, the letter R
•Rs• has as its value, the letters R

in BASIC•

are always

and s
• 1. has as its value, the symbol known as •one•
•yEs• is the string constant for the

3 symbols that make up the word •YES•
•wRAT IS THE NAME OF THE 2ND BASEMAN?•

is a rather long string constant

String constants are totally defined by the characters
making them up and the positions they occupy. That is, the
constant •yEs• can be analyzed by your BASIC proqram to
determine the fact that it is 3 characters in length, that
the first is a •y•, that the second is an •E• and that the
last is an •s• •

12

•

•

• ·

DATAPOINT BASIC

variables

Variables are values that can chanqe. Because of their
changeability, they are referred to by names . BASIC
variable names begin with a letter. Other letters and
numbers can follow if there are no embedded spaces •

Examples of legal names for variables:

A
84
BO
CLASS
FOREVER73
YEARTODATEEARNINGS
YTDEARNINGS
CODEZEBRA9

The following are illegal variable names in BASIC:

7A does not begin with a letter
YEAR-1 cannot have a dash
LET cannot have a variable named the

same as a BASIC operator or command
REMS cannot begin with REM (special rule)

Variable names cannot begin with REM because those letters
are reserved for inserting REMarks in progra~s. The BASIC
operator and eommand names that cannot be used are :

~~IQ Q.Q. Q.QIQ. INPUT PRINT GET SAVE lJ.il
=~T..=C.&£. ~ fill! l&Q. cos filIB. IAli Am GOSU B RETURN Q.il1

CLICK~ FALSE~ rn lliI. e.x. rn EOF
QAIAllliQ.

Hints: Variable names formed with one letter, or one letter
and one number are traditional BASIC and cannot possibly
conflict with the reserved words listed above. Keeping to
the traditional BASIC variable name rule will allow your
program to be directly executed on other BASIC systems
later, if this is a consideration.

For the advanced programmer: BASIC variable names may be of
any length but are implicitly limited because a statement
cannot be broken over lines. The following symbols are also

13

•

't

,:

DATAPOINT BASIC
5 : s and

con sid ered alphabetic for use in variable nameed in variable
. L case letters us (dollar and underline)• ower f ed are distinct

name s are permissible, but the names so ~~mation of 1ower
fran those with different ca sinq. Any ~~~ ~ASIC identifier
case letters and numbers forms a va 1 lY Any symbol
because all re served words are upper-case on • k so such
beginning with REM is taken as the stal~ ~f aN~~;arthat the
variables as REMAINDER should be ave e • c
lower case variables are unique to Datapoint BASI •

Implementation Limits .Q.D values

All numeric values are stored internally in Datapoint BASIC
as floating-point numbers with one byte (8 bits) of
characteristic and three bytes (24 bits) of mantissa. All
floating point numbers must be normalized at all times and
the sign is therefore taken to be the comple~ent of the most
significant bit of the mantissa. Zero is the onlY
unnormalized number permitted. As a result of this
representational scheme, very small numbers which could
ordinarily be expressed as an unnormalized number with the
smallest exponent cannot be represented in BASIC.

The largest number representable is approximately 1E38. The
smallest positive number representable is approximately
lE-38. Precision is ideally 24*(log base 10 of 2) or 1.22
digits. However, values are rounded to 6 diqits on output.
Note that subtractinq similar numbers will lead quickly to a
loss of precision. Zero fill is used in normalization.

Overflows during arithmetic will be indicated with the
message •ovERFLOW •" The characteristic has exceeded the
maximum size. Underflow is not announced, and the offending
result is placed to zero.

14

•

•

I
I

•

DATAPOINT BASIC

Stotement Format

BASIC statements can be stored for later execution, or
executed immediately. If a BASIC statement is preceded by a
i~~~ n?mber and a space, that statement will be stored under

line number. If the statement begins without a line
number (0-38399), BASIC will attempt to execute the statement immediately. This latter mode is useful for
commands and desk calculator like operations •

Spaces must be used to make BASIC
example,

LETCOUNTER •7

programs readable. For

is confusinq to you and to the computer.
correctly written

It would be

LET COUNTER•7

Where one space can appear, many may. Spaces are also legal
between parts of statements as in

LET COUNTER• 7 + 9 * (2 * 8

Spaces may not appear within a single variable name or
Within a BASIC operator. The following is ILLEGAL:

LE T COUNT ER • 0

because spaces occur in the middle of LET and COUNTER.

Multiple statements per line separated by semicolons
permitted. The following are correctly formatted:

LET OneMore•OneMore+l
10 LET OneMore • OneMore + 11 A•B-C•O
20 PRINT •ttI THERE YOU ALL•
LIST

The following are INCORRECTLY formatted:

PRINT2+3 space missing after PRINT
104568 HI•l line number too big
LETA•5 space needed after LET

15

are

:::::J

•

•

•

DATAPOINT BASIC

Remarks

Form: REM(<any sequence of characters>)

Examples:

RF.M THIS PROGRAM CALCULATES THE INNER PRODUCT
REM THE NEXT SECTION CALCULATES THE INTEREST
REMBRANT WAS A GREAT PAINTER
REM PRINT •HI THERE•

The REM statement allows comments within a BASIC program,
Although the comments make the proqram more readable, they
take up space that could otherwise be used for active
statements,

The REM statement is completely ignored when
Even the last example will have no effect,
BASIC inside a REM comment is as effectively
other information,

it is executed,
Putting valid

ignored as any

Only the first three letters need be
necessary after the REM, This is an
general rule that spaces must be present
parts,

REM, NO space is
exception to the
between statement

16

•

•

DATAPO I NT BASIC

Form:

Examples:

Assignment

(LET) <variable>•<expression>

LET A•l9
LET TOTAL•PIECEl + PIECE2
MANE• LION/ FUR

An assignment or replacement statement is used to give a
value to variables. The value may be a constant or it may
be computed as an expression involving any of the arithmetic
operations. Parentheses may, of course, be used to form a
complicated expression. The word LET is optional and may or
may not appear as desired.

17

•

•

•

DATAPO INT BASIC

Arithnetic Expressions

Arithmetic in BASIC is performed by means of arit hmet ic
opera tors , ar ithmetic functions and transcend en tal
func t ions . They can operate upon:

Numeric constants
Numeric variables

and to be disc ussed later:

+

*
I

INT
LOG
EXP
SIN
cos
TAN
ATN
SQR
RND

Fully subscripted vectors and arrays
Fully subscripted strings or string vectors

Addition
Subtraction
Multiplication
Division
Raise to a power
Take the largest integer
Natural logarithm
Exponential
Sine
Cosine
Tangent
Arctangent
S(!uare root
Random number

Examples:

2+3 *4 Operations are done in •normal• mathematical order
so that the multiplication is carr i ed out before
the addition. •Normal• mathematical order is
roughly fran the bottan of the list above to the
top. If in doubt, use parentheses to force order
of evaluation, Result ll lli

(2+3)*4 Parentheses forced 2+3 to be evalued first. Result
ll lli

(2+~/~ Illegal because a right parenthesis is missinq.

Zero. INT finds the largest whole number that is
less than or equal to the value of the expression .
I ITT 1 1 s l• INT l • 2 5 3 1 s l• INT -1 • 9 1 s -2 •

18

•

•

!.

DATAPO I NT BAS IC

~ This can also be written SQR(4).

Y.e.ll close .t..Q .!..L.. Anqle qiven t o SIN and cos is in
radians. Li kewise, ATN returns a r esult in
rad i ans . Mul t iply degrees by J .14159/180 to
convert t o rad i ans .

[.Qllt squared . Four is raised to the second power.

SQR(4+12> Four. The squarP root of 16 •

~ !±ll Fourteen. Wi thout parentheses, the square root is
taken first and then twelve is added •

Form:

Random result between~ .Arul L. The 1 is a dummy
argument to satisfy function syntax requirements.

Functions

<function> <expression>

Arithmetic functions:

INT Gives the largest integer between -8388607
and +8388607 that is less than or equal to
value of the expression.

LOG Gives the natural loq of the expression.

EXP Raises E (E•2.718282) to the power of the
expressi9n value.

SOR Gives the square root of the expression.

RND

Trancendental
SIN

cos

TAN

ATN

Gives a randan number between O and 1. The
expression is a dummy argument.

functions: (expression value in radians)

Gives the sine of the expression.

Gives the cosine of the expression.

Gives the tangent of the expression.

Gives the arctanqent of the expression.

19

•

I

DATAPOINT BASIC

Form:

Exa~ples:

~ Q.Q. IQ. statement

GO TO <linenumber>
GOTO <linenumber>
GO <linenumber>
TO <linenumber>

GO TO 120
GOTO 90
GO 6S
GO TO ABC
GOTO (100*!)

The GO TO statement transfers control of execution.
Ordinarily, the BASIC program is executed in line number
order. Encountering this statement changes the order of
exec ution. The next statement is the one specified.

The <linenumber> can be specified as a number which
represents a line. If, upon execution, no such line exists,
the message •No such statement• will be printed and
execution will halt. <linenumber> can also be a variable
which has as its value the number of the line to be executed
next. Expressions are also legal if they are enclosed in
parentheses as in the last example.

For the advanced programmer: <linenumber> can be omitted,
and the first line of the program is then executed.
Therefore, the command •co• is useful to start programs if
the initialization performed by the •RuN• command is not
desired. This is commonly the case if extensive work is
being done in direct execution mode and indirect mode is
entered only ~s an aid to the direct execution.

When a program has been arrested with the KEYBOARD key, the
GO statement can be used to continue execution at a
specified line number. The statement printed out at
execution arrest is the last statement executed. The GO
statement should be to the next line number.

20

•

•

DATAPOINT BASIC

Form:

Examples :

~ GOSUB ~ RETURN Statements

GOSUB (<linenumber>I
RETURN

GOSUB 19
GOSUB (10*1)
RETURN

The GOSUD and RETURN statements can be used to make
subroutines in BASIC• The GOSUB behaves exactly like a GO TO
except that the next statement number is remembered. When a
RETURN statement is executed, the statement after the GOSUB
Will be executed.

For the advanced programmer: GOSUBs can be nested so
subroutines call subroutines to a limited depth.
Without an argument will GO TO the first statement

that
GOSUB

of the
progra~.

GOSUB can be used in direct execution mode to debug a
subroutine. Set up applicable variables. GOSUB <linenumber>
in direct execution mode will cause the subroutine to be
executed. At the return statement, control is returned to
the operator. Variables and/or output can be examined for
correct operation.

RETURN executed as a direct command will remove memory of
the last GOSUB from BASIC and otherwise act as a
no-operation.

21

•

•

t

DATAPOINT BASIC

Fo rm:

Examples:

I.he U:. Statement

IF <cond ition> THEN <linenumber>
IF <cond ition> THEN <BASIC s tatement>

<condition> is defined as:

NOT <condition>
<condition> AND <condition>
<condition> OR <condition>
(<condition>)
<relational>

<relational> is defined as:

<expression><relational operator><expression>

<relational operator> is:

<
<•
•
>•
>
<>
f

less than
less than or equal
equal
greater than or equal
greater than
not equal
not equal

IF COST>lOOOO THEN SO
IF COST>lOOOO THEN PRINT •cost too high•
IF A•B THEN GO TO (23+c)
IF A<B AND A<C THEN 19
IF NOT A<•B THEN PRINT • A greater than s•
IF Nl•l AND N2•2 OR N3•(1+2) THEN LET FOUR•4
IF (A•B OR C•((SIN S)/0)) THEN PRINT TAR(9)
IF A<l THEN IF B>•2 THEN IF C•J THEN END

The IF statement allows the programmer to make a decision
based on the values of expressions composed of variables and
constants. Comparisons can be made using the operators <,
<•, =, t, <>, >"', and >. These conditions can be compounded
using the operators NOT, AND, and OR. Use parentheses to
indicate order of complicated condition••

When the condition is false, BASIC ignores the rest of the
statement. When the condition is true, BASIC examines the
part of the statement after the word THEN. If the word THEN
is followed by what could he a linenumber, BASIC simulatP.s a

22

I

•

•

•

DATAPOI NT BASIC

GO TO to that 11 b
to BAS 1 c

11
ke nen um er· If the construction does no t look

a linenumber, what follows THEN i s interpreted
a BAS IC s tatement. as

Becaus e of the limited precision of computer represe ntation
for numbers, computations that come out identical wit h
Penc i 1 and paper may not come out iden ti call y in t he
computer. If they were tested for equality, thr> c omputer
may o r may not think that they are equa 1. Therefore, avoid
t he use of the equality relational when dealinq with
fractional quantities. Use >c and<• instead •

For the advanced programmer: Conditions can be tested for
truth in direct execution mode. Type only the conditional•
BAS IC will reply with TRUE or FALSE as appropriate. The
words TRUE and FALSE are al so val id conditions in
themselves. Therefore, typinq •NOT TRUE• prints out
"FALSE.• IF statements can often be debugged usinlJ this
capability. Restriction: the • relational is not available
for this use because it conflicts with the use of ., in
direct assignment statements. (That 1 s, A•D is ambitJuous • >
Use an equivalent expression like NOT A<>B instead •

23

-

•

'

t

•

Form:

Examr,1 e:

FOR <va r ta ble >•<start> TO <f1' n•l> (
FOR a STEP <inc r>J <va r ta bl e >• <start> TO <final> (
NEXT <var i able> BY <incr>J

FOR zzz-1 TO 19
NEXT zzz

The FOR • nd NEXT statements allow reN• ted execution of the
s tatements betweM the FOR•~ the ~XT. <variable> should
b e a Simple Variable which Will be chang ed each time the
statements contained in the LOOP are executed. It will
s ta rt at <start>. It Will grow by 1 every time throuqh the
loop Unless a STEP is specified in which case it will chancre
by the amount of the STEP value. As soon as zzz goes past
t he final value, the loop Will end and the statement after
t he NEXT zzz statement wi 11 be executed.

For the advanced programmer: Loops can run both forward and
backward. The default STEP is +l and the loop runs forward
With the <variable> qetting larger every time. If STEP is
negative, <variable> gets smaller each time. On forward
running loops, loop execution continues until the value for
<var ia bl e> exceeds <final>. When the loop is exited,
<variable> contains this value. If the loop runs 1fackw:i:~
the loop continues t.mtil <variable> becomes sma er
<final>.

Each of the loop specifications may be an e=rr;;s:~~ s~!cf
ti For example, F~ I change during execu on. · th I taking on the values

wi 11 execute the loop 10 ti~es w~ t of the loop, I will have
l,2,4,8,16,32, and 64. Atl tee; be similarly manipulat~d
the va lue 128. The <fina > rnaof <variable> may also e
with i n the loop. The v:~~epredictable results. Note thaJ
changed wi ~hin the h!~~pa wloop that runs both fac:~:rd s;~P
it is poss1.bl~1iierent times if the sig~ o so that the
forward at d <final> is chang expression is changed an
loop will continue.

The innermost loops ts may be nested. out of the range FOR and NEXT statemen A transfer of control NEXT statement
are completed lfir~;cutinq a correspond~r: ss of the lexical
of FOR is leg a • to be repeated regar
will cause the loop

24

I

DATAPOINT BASIC

context of the NEXT. If the loop is exhausted, execution
Will continue at the NEXT which most immediately follows the
FOR in lexical order regardless of the position of the NEXT
Which caused the loop to be iterated.

Vacuous loops are possible and encouraged.

The number of active FOR loops is limited. A FOR loop is
active if a NEXT statement is legal for that loop. This is
true for every loop entered unless it was exited by
exhaustion or another loop utilizing the same loop variable
was entered. Therefore, problems may be encountered if many
FOR loops are exited with GOTOs. These problems can be
avoided by coding new loops with the same iteration variable
as loops exited with GOTOs. This precaution is not needed
except in extraordinary programs.

Samples:

10 FOR LOOPVARIABLE=l TO 10 STEP .5
20 PRINT LOOPVARIABLE
30 NEXT LOOPVARIABLE

will print 1, 1.5, 2, 2.5, 3, 3.5 •••••• to 10.

10 FOR 8=10 TO 1
20 PRINT B
30 NEXT B

will print nothing because the loop is vacuous.
example.

10 FOR B=lO TO 1 STEP -1
20 PRINT B
30 NEXT B

See next

will print out the numbers from 10 to 1 in reverse order.

25

7

•

•

t

DATAPOINT BASIC

Form:

Examples:

~ INPUT Statement

INPUT <variable>,<variable>, •• • <variable>

INPUT A
INPUT A,B,CCC
INPUT TRIALNUMBER

The I NPUT statement is used to request information from the
operator. The cursor begins flashing and the keyboard is
active for input. Numbers are taken from the line typed in
by the operator and assigned sequentially to the variables
in the INPUT statement.

One line of input from the operator corresponds to one INPUT
statement. If the operator types in fewer numbers than there
are variables on the INPUT statement line, the remainder of
the variables are qiven the value zero. If too many numbers
are typed in, the excess is discarded.

The format of the input is free. Any preceding blanks are
ignored. Arty character that cannot appear within a number
{such as blank or comma) terminates the number and the next
number begins in the position after the terminatinq
character.

26

•

•

DATAPOINT BASIC

Fo rm:

Examples:

~ PRINT Statement

PRINT [<expression>[<separator><expression>(•••)))

PRINT •THE TABLE OF PRIME IMPLICANTS FOLLOWS:•
PRINT SIN(ANGLEl)
PRINT COUNTER;• TIMES•
PRINT •ENTER THE PRINCIPAL AMOUNT: •:
PRINT 4+5,(9ASOR(2)),14
PRINT ·soURCE•,•RESULT·,x,Y,Z
PRINT •Name ten Presidents of the United States•

The PRINT statement is used to display results of
calculations and for informational purposes. In each case,
the PRINT statement specifies a list of values to be
Printed. Each value can be a string or numeric constant or
variable. If the word PRINT appears by itself, a blank line
is printed.

The separators between the values to be printed determine
the format of the ouputi

, Comma means •next column•
Semicolon means •no spacinq•

The output page is divided up into columns 16 spaces wide.
Separating items with commas tells BASIC to move into the
next available column to output the next value. Semicolon
means no spacing--the next value will be printed adjacent to
the current value. Each PRINT statement causes one line to
be printed unless (1) the values will not all fit on one
line: then, extra lines will be used or (2) a comma or
semicolon terminates the statement in which case the next
PRINT statement will continue where the current one stopped.

All printing is done on the CRT of the 2200 in this foI'TTl of
the PRINT statement. Five 16 column qroups are spread
across the 80 column width of the tube. At most, 12 lines
will be visible. output can be suspended with the DISPLAY
key. The screen will not roll as lonq as it is depressed.

Other forms of the PRINT and INPUT statements are described
later.

27

•

•

..

DATAPOINT BASIC

Form:
or

Examples:

~~Function

TAB <column number>
TAB (<column number>)

PRINT TAB 4,•Name•,TAB 26,.Address·
PRINT TAB 66:
PRINT 5+6:TAB(6):EXP(l.02+A)

The TAB function can be used only as a value within a PRINT
statement. It causes the next value to be printed in the
coluim number specified to the TAB function. If desired,
parentheses can be used around the column number which may
be any expression.

TAB can be used to get to particular places on the page for
formatting. The output need not be done in the same PRINT
statement: see the second example. The last example shows
TAB being used to squeeze output together while still
leav inq more spaces than a plain semicolon would have left.

tf.Q action ll taken .1f .w I.AD. position specified il .t2 .the.
1ili .21 .t..he current position su. .t..he output •

28

•

•

•

DATAPOINT BASIC

Form:

Example:

1he READ, DATA, .AM RESTORE Statements

READ <variable>,<variable>, ••• <variable>
DATA <value>,<value>, ••• <value>
RESTORE

READ A,B,C
DATA 10.32,-4,19E5
RESTORE

READ behaves much like the INPUT statement except that data
is retrieved from DATA statements rather than from the
keyboard. <value>s must match the type of the variable used
in .reading. The RESTORE statement causes the data to be
re-read from the beginning. Expressions are not allowed in
DATA statements. Unlike INPUT, one DATA statement need not
have exactly the number of variables necessary for one READ
statement •

29

•

•

•

•

DATAPOI NT BASIC

Form:

Examples:

I.he rn w ~ statements

STOP [•<comment>•]
END [•<comment>•]

STOP
STOP •ABC is out of range•
END
END •ALL DONE•

The STOP and END statements are used to signal the end of
stored program execution. Control reverts to the keyboard
operator. If a comment in quote marks follows the STOP or
END, it will be printed with the STOP or END when
encountered. This provides a means of assurin~ the operator
of proper completion. It c~n also be used ~s a fatal error
message indicating why the program stopped early. Good form
calls for the last statement of every proqram to be an END
statment.

The STOP statement is equivalent to depressing the keyboard
key. Execution can be resumed with the GO command. END
performs the functions of STOP, but in addition, it forces
input or output from/to casette tapes to be completed and
the tapes used to be rewound.

For the advanced programmer: A common mistake is
interruptiDl a program which is writing a tape and replacing
that tape. Any command which will use the new tape will
cause BASIC to attempt to complete the old tape, thereby
destroying the tape just loaded. The reason for this
phenomenon is that BASIC does not know you have replaced the
tape. The new command you have issued may very well have
applied to the tape currently loaded--in this case you
certainly want all of the output written before you start
reading it.

¥ou can indicate to BASIC that you are about to replace the
current tapes by typing END as a direct command. Thi s will
cause any input or output destined for the current tapes to
be completed. The new tapes can then be inserted with no
fear that deferred input or output will destroy them •

30

•

•

!

•

,

DATAPOINT BASIC

Form:

Examples:

~ llllli commond

RUN (<linenumber>J

RUN
RUN 40

The RUN command is used to initialize the
execute the stored program. If a linenumber
execution begins with that linenumber •

machine and
is supplied,

For the advanced programmer: The ini tiali za tion
Performed include:

• Write any incomplete output on casette tap~s
• Rewind ca sette tapes before use
• Clear any arrays previously in use
• Clear any memory of previous GOSUBs
• Clear any memory of previous FOR loops
• ca use any READ statements to read from the

first DATA statement

steps

Note that simple variables retain their values and are NOT
reset to zero or undefined. This permits parameterized
execution.

31

'

•

!

f

DATJ\PO INT BAS IC

Utilit'l commands

LIST [<linenumber>] or LIST

The LIST command prints a copy of th~ current
:tatements . If <linenumber> is included, the listinq

t that line. Use the DISPLAY key to hold output
screen. Use KEYBOARD to cut a LISTinq short-

SCRATCH

ston'.!d
berr ins

on the

The SCRATCH command causes everything BASIC knows to be
erased. If tapes were being written, they are completed and
~ewound . The workspace is left clear. The stored program
15 erased. All variables are erased. This command is
useful to get a clean workspace for new work.

SAVE

To save the current stored program, insert a blank tape in
t~ front ca sette deck and say SAVE. The proqram will be
written to the tape. The values of variables are not written
to tape. You will probably want to remove and label the tape
immed ia tel y.

GET

To recover a stored program saved with the SAVE command, use
GET. GET will perform all the functions of SCRATCH except
for ini tia 1 i zing cassette tapes. The current stored proqram
and the values and names of all variables will be erased.
The program in the front deck wi 11 be read. If the program
was previously SAVEd, the tape will rewind and BASIC will be
READY•

Sometimes the 2200 memory can become boggled with variables
and values you no longer need. BASIC, however, does not
know you no longer need them. You can clean up the memory
(ro there is more room for new things!) by SAVEing the
program and GETing it back.

complex editing can be performed on the program
it and using GED IT on the resultant tape.
program can be retrieved with GET 0

32

by SAVEinq
The edited

•

•

•

DATAPOI NT BASIC

Adyance~ BASIC

The fol lowing i
advanced BASIC sect ans describe in detail features for the
familiar with t~ogrammer. The user should be thoroughly

Form:

Examples:

precedinq sections before proceedinq.

~ lll.M Statement

DIM <variable> (<bound>) •••••
DIM <variable>(<boundl>,<bound2>) ••

DIM A(19)
DIM B (2 4, 4)
DIM C(5),D(6,7),E(99)
DIM FFF(4*C),GGG(EXP(Ol))

. . . .

The DIM statement is used to indicate that

1. The variable named is an array
2. The maximum size of the array

Collections of numbers can be stored under the same variable
name in BASIC. Arrays can be defined as one or two
dimensional. In a one dimensional array, numbers are stored
and referenced in the same way they would appear in a list.
To reference the third number in an array, a subscript of 3
is used. If the array name is A, the reference is A(3J. The
square brackets or parentheses are used to enclose the
subscript. In a two dimensional array, numbers are stored
and referenced the same way they would appear in a table•
The row and column which contain the desired number must be
specified. The variable A[2,51 references the number in the
second row, fifth column of array A.

The <bound> is the number of 1 terns that appear in a an
array. The first example above saves space for a single
dimension array named A which contains 19 items. If two
numbers appear between the parentheses, then these are the
maximum numbers of rows and columns. In the example above,
Bis dimensioned as an array with 24 rows and 4 columns.

For the advanced programmer: The value of the
be any expression evaluable at the time
performed. This includes expressions which

33

<bound>s
the DIM
con ta in

can
is

the

I

•

•

'

DATAPOINT BASIC

results of previous calculations.

A_non-dimensioned variable which has previously contained a
!~ngle, scalar value cannot be redefined as an array and
thee-versa. This occurs because BASIC detects an error when

e programmer uses the same name for what must be different
and i ndependent variables (since they are of different
type).

A variable which w ~ DIMed cannot~ PIMed again until
~~program u ~ .oi: ~ Billi command ll given. somP
systems do not allow dimensioning of variables by
expressions and therefore will ignore DIM statements in
exec ution loops. In Datapoint BASIC, a re-execution of a DIM
statement in a program will cause a subscript error. If this
occurs, it must then be moved to a position in the program
where it will be executed only once. If, in direct execution
mode it is necessary to re-DIM a variable, the RUN command
with a non-existent line number for an argument will
re-initialize array storage and allow new DIM statements.

The message •No room• occurs when there is no space in the
2200 memory to allocate space for an array or program.
Occasionally, enough space can be recovered by a SAVE and
GET to allow execution. Sometimes, removing other arrays
from array space by executing the RUN command to a
non-existent line will give enough space to allocate the
current array.

The DIM statement is legal as a direct execution statement.
To go to stored execution, use GO subsequently instead of
RUN since RUN deletes DIM storage.

34

I

I

-~

•

DATAPOI NT BASIC

l.!.ll .Q1 Arrays

'A subscripted variable can appear any place ·where a -variable
can appear except as the index for ·a FOR statement. The
ordinary parentheses (and) can be used for [and J on
input. Here are some examples:

10 DIM A(20),B(4,5)
20 LET A(2)•10
3 0 DIM C (A (2) -1)
40 A(A(2))-=A(2)

50 IF A(2) <> A(SOR(l00)) THEN PRINT NOops1•
60 GO TO (A(2)*7)
70 B (l, l) •5
80 FOR I-C(l) TO B(l,l)
90 C(l+I)•B(I,I)+I
100 NEXT I
110 PRINT A(2),B(l,1),C(6)

1l.U ~ strings

The preceding sections have discussed the use of BASIC on
numeric data. This section describes the string handling
capabilities of Datapoint BASIC. A string of characters can
represent names, titles or any other kind of information.

A number that does not change is called a constant. A
string that does not change is a string constant. A strin~
constant is written in BASIC by enclosing it in double quote
marks.

PRINT •THIS IS A CONSTANT STRING•

The PRINT statement above prints the constant
consisting of the 25 characters beginning with the
THIS) and ending with the G (of STRING).

string
T (of

To Strings can also be used as the values for variables.
distinguish between numeric and string variables, the names
for string variables end in$. The length of a string must
always be given in a DIM statement before the strinq ct11n be
used so that BASIC knows how much room to reserve for it.

10 DIM MESSAGE$(80)
20 MESSAGESc•NoW IS THE TIME FOR STRINGS•

35

•

,,. ..

•

DATAPOINT BASIC

30 PRINT MESSAGES

Wi l l pr i nt out the value of MESSAGES, namely, NOW IS THE
TIME FOR STRINGS. Note that while arrays must al ways be
subscripted in use, strings need not be subscripted.

Strings can be used in the fol lowinq statements:

• LET
• INPUT
• PRINT
• IF • • THEN
• DATA
• READ

The length of a string is the number given to its DIM
statement. On input and output, strings of no more than 80
characters can be used. On output, all of the string will be
written unless a 13 (new line) or 3 (end of this output) is
written into some character position of the strinq.

The individual characters of a string
subscripting the string just ~s arrays are
example, to print the seventh character of
SSl7J could be used. Similarly, to replace
of ss with a star, use S$(9]••••.

can be used by
subscripted. For
string S$, PRINT
the 9th character

A string is blanked out when DIMed. On a string assignment,
excess characters are dropped and extra ·positions are filled
with blanks.

A single character of a string, when subscripted, can act as
a real number in calculations. The number will be the value
of the character in the ASCII character set. Blank is 32.
The letter A is 65. Consult the ASCII chart (Appendix B) for
others. Pretend that you want to place the Ith character
from A in SS(l). Then, use

Examples:

SS (l)•65 +I

10 DIM ANSWER$(3),NAME$(10)
20 PRINT "This program prints backwards."
30 PRINT "Type in the name: •;
40 INPL1I' NAMES
50 FOR I=l0 TO l STEP -1

36

•

fl. ..

DATAPOINT BASIC

60 PRINT NAMES[IJ:
70 NEXT I
80 PRINT• Do you want to try another? •:
90 INPUT ANSWERS
100 IF ANSWERSc•yEs• THEN 30
110 IF ANSWERS=·No· THEN END •wasn't that fun?·
120 PRINT •Please answer YES or No.•
130 GO TO 80
140 END

10 REM FOUR LETTER WORD DETECTOR
20 DIM S$(10),FOUR$(4),NEWFOURS(l0)
30 PRINT •1 detect four letter words.•
40 PRINT "Try typing in a word"
50 INPUT 5$
60 FOURS•SS
70 NEWFOURS•FOURS
80 IF NEWFOUR$•5$ AND (5$(4)<>" •) THEN 110
90 PRINT "That's fine. Feed me another.•
100 GO TO 40
110 PRINT •You typed a four letter word!•
120 FOR Icl to 100
130 BEEP
140 NEXT I
150 END •I QUIT II!•

37

• C

DATAPOI NT BASIC

Input AWl output

Datapoint BASIC allows input and output from several
devices. They have been given numbers for use in describin~
them to BASIC:

O Keyboard and display
1 Rear casette deck
2 Front casette deck
4 Printer

The input and output statements in BASIC can accept a
specifier of the form l<number> to indicate the input/output
device desired.

Forms: PRINT f<number>,<expression> ••••••
INPUT f<number>,<variable> • •• • • •
LIST f<number>,[<linenumber>J
SAVE #<number>,l<linenumber>J
GET #<number>

Note: SAVE and GET 10 uses front casette deck instead of the
keyboard/display.

The <number> can be any valid BASIC numeric expression.
Input frCJn the printer is, of course, illegal. A handy
technique is to use the variable Q to be the output device.
Then, during debugging, Q=O will direct output to the
display. During production, Q can be assigned the number of
the proper I/0 device.

A remote, local or servo printer is automatically configured
at system load time. Unused printer support area is
automatically added to the user's work area. A remote
printer is assumed to be 30 cps through the RS-232
connection of the 2200-400. When using a local or servo
printer, make sure it is ON and ON-LINE during load time.

38

•

•

DATAPOINT BASIC

Some e t x ra statements d
an statement forms for 1/0 follow:

Form: BEEP
Example: BEEP

The BEEP statement
for s ignaling th causes the 2200 to beep. This is useful
errors or the edo~erator. Typical uses include siqnalinq
computation. nee or operator intervention after a long

Form: CLICK
Example: CLICK

The CLICK statement causes
for signaling the operator
would be annoying.

the 2200 to click. This is useful
in situations where the beep

Form: APP (#<number>J
Example: APP

The APP command is used to indicate that the contents of a
cassette tape are to be APPended to the current proqram. If
the I/0 unit number is omitted or zero, the front casette
deck is assumed.

Form: END l<number>
Example: END 12

The END statment with an I/0 device number causes the named
cassette unit to be re-intialized. This is useful for
changing a unit from reading to writing, or vice-versa. For
example, assume that an intermediate tape is beinq written•
It should be closed and re-opened for reading. END #2 will
close out the front tape and allow it to be read from the
beginning without stopping the program.

END #<number> does not stop
#<number> implies all numbers
execution.

execution. END
and in addition,

Form: IF EOF #<number> THEN <linen umber>
Example: IF EOF 11 THEN 17

39

without
stops

______ 11111111111![11.

I

•

•"

DATAPOINT BASIC

This special form of the IF statement is used to determine
when an INPUT statement has encountered an End Of File on a
spec i tied ca sette tape unit. Note: ll. ~ i is not a trap
and must be executed immediately after the INPUT statement
to test the EOF condition.

The following program reads the casette tape in the front
deck and prints it on device Q.

10 PRINT •List a GEDIT tape on device o-
20 DIM S$ (80)
30 NcO
40 PRINT -PLACE TAPE TO BE LISTED IN FRONT DECK••
50 PRINT •List on Display or Printer? •:
60 Qc-1
70 INPUT SS
80 IF SSa•o• THEN Q•0
90 IF ss-•p• THEN Q•4
100 IF Q<0 THEN 50
110 INPUT #2,S$
120 IF EOF #2 THEN 200
130 N•N+l
140 PRINT IQ,S$
150 GO TO 110
200 PRINT•- - - - - - -•
210 PRINT •End of file after •:N:• records.•
220 END

40

DATAPOINT BASIC

~ Hint§

The files Used b
are compatibl y Datapoint BASIC are written so
data ana e With the CTOS d that they
EDI Programs can be an DOS editors. Therefore,
edi ~ (transfer to and fro~r~ia~ed Usinq CTOS GEDIT or DOS
soft~!rformat are also acce;t~it~ SIN and SOUT). Files in
format e systems. Numbers and stri Y All other Datapoint
wr . --as edited characters ng s are kept in the same

ltten as strings and read ba~k Therefore, output can he
as numbers and Vice versa.

In[)ut d
str . an output can be format usinq
fir~~ g s are _of constant length.
f name 1n columns 1-10 and

BASIC strings since the
For example, if input has
last name in 11-20, the Ollowing will handle it:

10 DIM FIRSTNAMES(lO),LASTNAMES(lO)
20 INPUT 11,FIRSTNAMES,LASTNAMES

:~meric and string fields can be mixed. The numeric field
n 11 ~ end with the first character that cannot belong in the

h
um er. The string field will end after getting enough

c aracters to fill the string.

Do NOT read and then write, or write and then read the same
ca set te deck without an END #<number> statement interveninq.
This can cause some tricky disasters.

Remove cassette tapes l!hen .nS2t .1n .Y.ll.!. Punch .2lLt ~
read-only ll.b .on .tM BASIC cassette. It is too easy to leave
tapes in and then accidentally type something that tries to
write on the tape.

I /0 to tapes not loaded causes the machine to hana. Use the
keyboard key to recover. Then type END #<number> for the
unit causing problems. This will probably hanq again.
Repeat the keyboard and END seauence until the machine
responds READY· At this po int, the machine has finall Y
(Jiven up trying to use the empty deck.

41

I

-

•

DATAPOINT BASIC

Formatting Display output

The 2200 display can be randomly accessed and
through BASIC. To do so, special code numbers
direct special actions.

08 - A new horizontal position follows
11 - A new vertical position follows
1 7 - Erase to the end of the screen
18 - Erase to the end of the line

maneuvered
in str in'l s

• For example, the following will clear the screen and

4
I'.

position a message in the middle:

1 0 DI M CLR $ (S)
20 CLRS(l)sll; CLRS(2)=-0; CLRS(3)c8; CLRS(4)•0
3 0 C LR$ (S) = 1 7
40 PR INT CLRS
SO CLRS(2)•S; CLRS(4)•30
60 PR INT CLR $; "D a t a p o i n t B a s i c"
70 GO TO 70

Formatting servo Printer output

Special code numbers in strings allow paqinq ann over
printing on the servo printer:

12 - Page Eject
14 - Carriage return and suppress line feed

For example, the following will overprint one line and page
eject:

10 DIM CRS(l),PGS(l)
20 CRS(1)=14:PGS(1)=12
30 PRINT #4,"ABCDEFGH";CRS:"01234567";PGS
40 END

42

.:

•

•

DATAPOINT BASIC

£lotting !!1.tb servo Printer~

The servo p i t . r n er can be micro positi ed for using the • on plotting by
BASIC Thspec1al co-ordinate positioninq feature of 2200

• e micro co-ordi t Positio · na e feature allows direct
before ~~~~ti~q~n~oof 589 •~~ 4 micro positions on a page
messaqe• " . use t is feature rer,ly: •y" to the
appear d ~ILL YOU BE MICRO PLOTTING?". This will only

. ur ng initialization if your 2200 h a servo
Printer attached and ready An a 5

feature and add the micro p• lotriother reply will delete the
space. ng area to the users work

Micro positioning co-ordinates

10 DIM AS (5)
20 AS(l)-=15
30 AS(2)-=HORIZ/256
40 AS(J):sHORIZ
50 AS(4)=VERT/256
60 AS(S)=VERT

are defined as follows:

Statement 10 defines a five character string array that will
direct the servo printer to position to a micro co-ordinate.
Horizontal and vertical co-ordinates must be in the ranqe o
to +768. AS(l) contains the special function code 15 that
indicates to the servo printer driver that co-ordinates
follow. AS(2) and AS(3) contain the horizontal co-ordinate•
AS(4) and AS(S) contain the vertical co-ordinate. Statement
30 causes BASIC to take the floating point variable "HORIZ"
and divide it by 256, convert the result to an integer and
store the result in AS(2). Statement 40 causes BASIC to take
the same variable and convert it to an integer and store the
least significant byte (value 0-255) in AS(J). Statements 50
and 60 store the vertical co-ordinate.

Micro positioning moves the print carriage ann printer
platen simultaneously along the most direct path to reach
the desired position. Horizontal co-ordinate 0, vertical
co-ordinate O is the position of the carriage and platen
following the last carriage return executed • When generating
co-ordinates, consideration should be given to the fact that
five horizontal micro increments equal four vertical micro
increments on a servo printer • The printer can position to
60 micro positions per inch horizontally and 48 micro
positions per inch vertically •

43

•

I

DATAPOINT BASIC

For Example:

10 DIM S$(5)
20 S$(1)=1S;TWOPI=6.28319;Is2.32711E-2
3 0 FOR A=I TO 'IWOPI STEP I
40 X•SIN (4 *A)
50 H=l60+100*(COS A)*X;V•80+80*(SIN A)*X
60 S$(2)=H/256;S$(3)=H
70 S$(4)=V/256;S$(S)•V
8 0 PR I NT # 4 , S S ; " * " ;
90 NEXT A
100 END

RUN the program and you qet this:

"· • *
* •

/'\
* I

* * * * * •
*

* *
* • •

• • * *

(** * * * • * * * * * **) ••• * * ••
•• •• •• *• *• •• ••• • •• •* ••

*. * *\ ,· * •• *
! l • •~••• • l ! ••* •* *• •••

*.. * * • * * * *
•* *• - •* *•

(* * * ** * * *)* *. . * * ** * * * * * * * •• * * ** * • • *
* * • *
• * " *
* * * *
t * •• : v· *•..J

Co-ordinate positioning strings must not be output to any
device except the servo printer or the result will be
unpredictable! All five elements of the strin~ must be
output as a single element or loss of sychronization will
occur!

44

'
•

t

DATAPO INT BASIC

Program chaining

If a BASIC proqram is too larqe to be executed at once, it
may be possible to break it into smaller parts that run
sequentially after one another. If necessary, data c~n be
Passed from one program to the other using cassette tape for
interMediate storage.

Blank lines and the immediate command "GO" must be inserted
Using CTOS GEDIT or DOS EDIT (transfer to and from disk with
SIN and SOUT) •

Example:

10 PRINT "FIRST SEGMENT"
20 GET
(blank line)
10 PRINT •SECOND SEGMENT"
20 GET
GO
10 PRINT •THIRD SEGMENT"
20 END
GO

Place the cassette containing the edited program in the
front deck and type GET. The first segment will be read in,
stopping when the blank line is read. READY will be
displayed. Type GO (not RUN which rewinds!) and the first
segment Will be executed. When line 20 is executed, the next
seament will be read in, scra tchinq the seqment executing
the GET. The GO at the end of the second and third segments
will cause immediate execution as soon as they are read in.

You can also chain to code generated by your program. For
example:

10 DIM NS (4)
20 PRINT "ENT.ER
30 INPUT NS
4 0 PR INT 12 , • 1 0
50 PRINT #2,"20
60 PRINT 12, "30
70 PRINT #2, •co"
80 END 12
90 GET

N• ". • I

A •SIN (•:NS: ") +COS
PRINT A
END"

45

(":NS:")"

DATAPOINT BASIC

Hint§ .QIJ Writing Package~

BASIC h
f as been de s1qn ed so th

Unctions can b at packaqes that perform useful
fun · e wr 1 tten in BASIC ct .ion is asked t • The opera tor of the
and type GET. 0 put the program tape in the front deck

If the d
ta . wor RUN or GO is added to the end of the program
c pe 1 w .1. ~ h GED IT• the Pr oq ram w 111 bP run i mmed ia tel y

one us.ion of loadi If upon
s hou ld be ng. the progr<"lm is segmented, GO

used to prevent rewinding the program tape!

Example of self-starting program:

10 PRINT •THIS PROGRAM STARTED ITSELF WHEN•
20 PRINT "IT WAS RETRIEVED FROM TAPE."
30 END
RUN

All user parameters should be checked as closely as
possible- Any STOP or END statements should have comments
indicating disposition. Be sure that an END is the last
statement in the program. Give any directions possible-

Self-destructing programs are also possible.
an example:

Following is

10 PRINT •PROGRAM SELF-DESTRUCTS IN 10 SEC.•
20 FOR I=l TO 500
30 BEEP
40 NEXT I
50 SCRATCH

46

•

DATAPO I NT 81\SIC

Optimizing usage 2.1 ~ space

The program capacity of Datapoint BASIC can be qreatlY
increased by using a few simple s~ace saving technioues when
genera ti nq programs.

Use multiple statements per line whenever possible.

Avoid use of REl-1 statements.

Keep variable names short.

• Use strinry arrays for storage of small positive integers
(0-255).

Use GO or GOTO instead of GO TO.

Use •IF <condition> THEN <BASIC statement>N form of IF
statement.

Keep message strings in PRINT statements as short as
possible.

Do not use the optional word •tET• in assignment statements •

47

.. a

•
&

DATAPOINT BAS IC

APPENDIX A

Instruction summarY

Standard BASIC:

LET <variable>•<expression>
GOTO <linenumber>
GOSUB [<linenumber>J
RETURN
IF <condition> THEN <linenumber>
FOR <variable>=<start> TO <final> [STEP <incr>J
NEXT <variable>
STOP [•<comment>•]
END [•<comment>"]
REM [<any sequence of characters>]
DIM <variable>(<bound>) ••••••
INPUT <variable>, <variable>, ••••
PRINT [<expression>(<separator><expression>[••• JJJ
READ <variable>,<variable>, ••• <variable>
DATA <value>,<value>, ••• <variable>
RESTORE
RUN
LIST [<linenumber>J
SCRATCH
SAVE
GET

Datapoint Extentions:

INPUT #<number>,<expression> ••• • •
PRINT #<number>,<expression> •• • • •
BEEP
CLICK
LIST #<number>, (<linenumber>J
SAVE #<number>,(<linenumber>J
GET #<number>
APP [#<number>)
END (#<number>)

48

Paqe

17
20
21
21
22
24
24
30
30
16
32
26
27
29
29
29
31
32
32
32
32

38
38
39
39
38
38
38
39
39

•

DATAPOINT BASIC

APPENDIX B

Numeric Values cl ASCII Characters

A 65 a 97 0 48 58

B 66 b 98 1 49
. 59 ,

C 67 C 99 2 50 < 60

D 68 d 100 3 51 :2 61

E 69 e 101 4 52 > 62

1 F 70 f 102 5 53 ? 63

G 71 g 103 6 54 I 91

• H 72 h 104 7 55 \ 92

I 73 i 105 8 56 I 93

J 74 j 106 9 57 - 94

K 75 k 107 Blank 32 95

L 76 l 108 I 33 ti 64

M 77 m 109 " 34 { 123

N 78 n 110 I 35 I 124

0 79 o 111 s 36 } 125
p 80 p 112 ' 37 '126

Q 81 q 113 & 38
R 82 r 114

. 39
S 83 s 115 (4 0
T 84 t 116) 41
U 85 u 117 * 42
V 86 V 118 + 43
W 87 w 119 , 44
X 88 X 120 - 45
'i. 89 y 121 • 46
z 90 z 122 I 47

-

49

•

•

t

•

DATAPOINT BASIC

APPENDIX C

Error Messages

NO SUCH LINE#
NO ROOM
LINE # > 38399
.. N UNMATCHED
DICTIONARY FULL
MISSING OPERATOR
() TOO DEEP
() UNMATCHED
I /0 ERROR
UNDEFINED VARIABLE
STRING ERROR
SUBSCRIPTING ERROR
GOSUB/RETURN ERROR
NO MORE DATA
[] UNMACHED
STACK UNDERFLOW
TOO COMPLICATED
BAD STATEMENT
CAN'T OUTPUT THAT
FOR/NEXT ERROR
OVERFLO\i
DIVIDE BY ZERO
ARITHMETIC ERROR

50

